A) a mouse, to an order of magnitude = 0.1 m ( a tenth of a meter ) That would be a big mouse but the alternatives are 1 meter or one hundredth of a meter... so go with 1/10th
<span>b) Easy = 1 meter </span>
<span>c) two choices 10m or 100 m . Go with 100 m </span>
<span>d) Stretch it out , trunk tip to tail tip - call it 10 m </span>
<span>e) Your choice 100 m or 1000 m..... These are estimates. So long as you are within one order of magnitude you can't really be given wrong. So I'd say 100m</span>
Answer:
4.9 x 10^-19 J, 2.7 x 10^-19 J
Explanation:
first wavelength, λ1 = 410 nm = 410 x 10^-9 m
Second wavelength, λ2 = 750 nm = 750 x 10^-9 m
The relation between the energy and the wavelength is given by
E = h c / λ
Where, h is the Plank's constant and c be the velocity of light.
h = 6.63 x 10^-34 Js
c = 3 x 10^8 m/s
So, energy correspond to first wavelength
E1 = (6.63 x 10^-34 x 3 x 10^8) / (410 x 10^-9) = 4.85 x 10^-19 J
E1 = 4.9 x 10^-19 J
So, energy correspond to second wavelength
E2 = (6.63 x 10^-34 x 3 x 10^8) / (750 x 10^-9) = 2.652 x 10^-19 J
E2 = 2.7 x 10^-19 J
Answer:
a. slope=rise/run
rise=0.02
run=-2
determined using the point (3,0.08) and (1,0.1) on the graph
slope=0.02/-2
= -0.01 or -1/100
b.area= area of trapizoid+ rectangle
((0.07+0.11)÷2)×4+1×0.07
0.36+0.07
=0.43$
c. the area represent the total cost after 5 hours
PLEASE MARK BRAINLIEST
Force is directly proportional to rate of change of velocity so it increasing, velocity (motion of the object) will also increase.
Hope this helps!
The inductance of several inductors in series is the sum of all the individuals ... just like for resistors.
a). With 1.05H and 2.07H in series, the equivalent total inductance is <em>3.12H</em> , provided the inductors can't influence each other with their magnetic fields.
b). If you had 30 identical inductors in series, each with inductance of 3.03H, AND none of them could influence any other ones with their magnetic fields, their combined equivalent inductance would be
(30) · (3.03H) = <em>90.9 H</em> .