According to O*NET, the common work contexts for Licensing Examiners and Inspectors include:
- Telephone
- Face-to-face discussions
- Contact with others
- Importance of being exact or accurate.
O*NET is an acronym for occupational information network and it refers to a free resource center or online database that is updated from time to time with several occupational definitions, so as to help the following categories of people understand the current work situation in the United States of America:
- Workforce development professionals
- Human resource (HR) managers
On O*NET, work contexts are typically used to describe the physical and social elements that are common to a particular profession or occupational work. Also, the less common work contexts are listed toward the bottom while common work contexts are listed toward the top.
According to O*NET, the common work contexts for Licensing Examiners and Inspectors include:
1. Telephone
2. Face-to-face discussions
3. Contact with others
4. Importance of being exact or accurate.
Read more on work contexts here: brainly.com/question/22826220
For the general public, the main impact is the cost of living. The economy has a direct impact on our spending ability. An economic recession generally leads to an increased cost of living. ... The countries currency is also generally affected during a recession, which contributes to inflation of prices.
Answer:
B. to lock the tape into place
Explanation:
the button on the front of the housing locks the tape into place when pressed, preventing the tape from being pulled out further it retracting
Answer:
(a) the velocity ratio of the machine (V.R) = 1
(b) The mechanical advantage of the machine (M.A) = 0.833
(c) The efficiency of the machine (E) = 83.3 %
Explanation:
Given;
load lifted by the pulley, L = 400 N
effort applied in lifting the, E = 480 N
distance moved by the effort, d = 5 m
(a) the velocity ratio of the machine (V.R);
since the effort applied moved downwards through a distance of d, the load will also move upwards through an equal distance 'd'.
V.R = distance moved by effort / distance moved by the load
V.R = 5/5 = 1
(b) The mechanical advantage of the machine (M.A);
M.A = L/E
M.A = 400 / 480
M.A = 0.833
(c) The efficiency of the machine (E);
