<span>Ca(NO3)2 (aq) + Na2SO4 (aq) --> CaSO4 (s) + 2NaNO3 (aq)
Ca2+ (aq) + 2NO3- (aq) + 2 Na+ (aq) + SO4 (aq) --> CaSO4 (s) + 2Na+ (aq) + 2NO3- (aq)
cancel out spectator ions
Ca2+ (aq) + SO4 (aq) ---> CaSO4 (s hope it helps</span>
NaCl + AgNO are the reactants since the reactants are always on the left side of the yield.
Remember velocity = distance/time so that mean you would do 60/3 which equals 20 so the speed(velocity) equals 20
Explanation:
A process in which water vapor changes into liquid state is known as condensation. As we know that when energy is released in a reaction then it is known as exothermic reaction and when energy is absorbed in a reaction then it is known as endothermic reaction.
As vapors have high energy so, when they change into liquid state then heat energy is released by them. Therefore, condensation is an exothermic reaction.
As per Le Chatelier's principle, any disturbance caused in an equilibrium reaction will tend to shift the equilibrium in a direction away from the disturbance.
So, when there will occur a decrease in temperature then molecules of a gas will come closer to each other. Hence, there will also occur a decrease in vapor pressure of the gas.
Answer:
Carbon dioxide
Explanation:
Neither helium nor carbon dioxide has a molecular dipole, so their strongest van der Waals attractive forces are London forces.
Helium is a small spherical atom with only a two electrons, so its atoms have quite weak attractions to each other.
CO₂ is a large linear molecule. It has more electrons than helium, so the attractive forces are greater. Furthermore, the molecules can align themselves compactly side-by-side and maximize the attractions (see below).
For example. CO₂ becomes a solid at -78 °C, but helium must be cooled to -272 °C to make it freeze (that's just 1 °C above absolute zero).