Answer:
the heart would fail to efficiently pump oxygenated blood to the body and lungs
v = initial velocity of launch of the stone = 12 m/s
θ = angle of the velocity from the horizontal = 30
Consider the motion of the stone along the vertical direction taking upward direction as positive and down direction as negative.
v₀ = initial velocity along vertical direction = v Sinθ = 12 Sin30 = 6 m/s
a = acceleration of the stone = - 9.8 m/s²
t = time of travel = 4.8 s
Y = vertical displacement of stone = vertical height of the cliff = ?
using the kinematics equation
Y = v₀ t + (0.5) a t²
inserting the values
Y = 6 (4.8) + (0.5) (- 9.8) (4.8)²
Y = - 84.1 m
hence the height of the cliff comes out to be 84.1 m
Answer:
71.85 m/s
Explanation:
Given the following :
Length of skid marks left by jaguar (s) = 290 m
Skidding Acceleration (a) = - 8.90m/s²
Final velocity of jaguar (v) = 0
Speed of Jaguar before it Began to skid =?
Hence, initial speed of jaguar could be obtained using the formula :
v² = u² + 2as
Where
v = final speed of jaguar ; u = initial speed of jaguar(before it Began to skid) ; a = acceleration of jaguar ; s = distance /length of skid marks left by jaguar
0² = u² + (2 × (-8.90) × 290)
0 = u² + (-5,162)
u² = 5162
Take the square root of both sides
u = √5162
u = 71.847 m/s
u = 71.85m/s
Assuming Adam is on earth g= 9.8 m/s and m= weight/ gravity = 667/9.8 = 68 kg