Answer:
Area=1.5(1.5)=2.25m^2
Force of gravity=10N
\begin{gathered}\\ \sf\longmapsto Pressure=\dfrac{Force}{Area}\end{gathered}
⟼Pressure=
Area
Force
\begin{gathered}\\ \sf\longmapsto Pressure=\dfrac{10}{2.25}\end{gathered}
⟼Pressure=
2.25
10
\begin{gathered}\\ \sf\longmapsto Pressure=4.4Pa\end{gathered}
⟼Pressure=4.4Pa
His is a step down transformer since n(primary) is greater than n(seconcary). You relate the input voltage with the ouput voltage with the following equation:
<span>Vout = n2/n1*Vin (n2/n1 is essentially your 'transfer function' that dictates what a specified input would produce) </span>
<span>Solving the equation: </span>
<span>Vin = Vout*n1/n2 = (320V)*(600/300) = 640 V </span>
<span>This is checked by seeing if Vin is greater than Vout, which it is for a step down transformer.</span>
Answer:
Ok, her position changed over time since the road is curved.
The velocity changed since the direction is changing
AccelerTion: theres a change in velocity since the direction changes
Direction: changed over time
Displacement : difference between 1st and final position
Explanation: