Hey there!
Seems like you're looking for the size and direction to the final velocity of the two cars. To find it, you must solve it like this.
0.4 kg(3 m/s) + 0.8kg(–2 m/s) = 1.2 kg m/s -1.6 kg m/s = –0.4 kg m/s
–0.4 kg m/s = 1.2 kg(v) = (–0.4 kg m/s)/(1.2 kg) = v = –0.33 m/s
So, the cars are traveling at -0.33 m/s in the direction of the second car.
Hope this helps
<em>Tobey</em>
the earth moves throughout the year such as rotate around the sun, so yes the it does move and it sits roughly at 93.048 million miles away from the sun. I hope this helps you out! :)
Answer:
K = m g (A - A2)
Explanation:
In a block spring system the total energy is the sum of the potential energy plus the kinetic energy, for maximum elongation all the energy is potential
Em = U₀ = m g A
For when the system is at an ele
Elongation A2 less than A, energy has two parts
Em = K + U₂
K = Em –U₂
We substitute
K = m g A - m gA2
K = m g (A - A2)
Hello! Assuming that the only force acting on the mass is 30N...
Fnet = 30N
Fnet = ma (mass x acceleration)
ma = 30N
a = 30N / m
a = 30N / 7kg
a = 4.2857 m/s^2
a = 4 m/s^2
I hope this helps!
1 Newton in Earth gravity is the equivalent weight of 1/9.80665 kg on Earth. This is derived using Newton's second law f=ma and assuming Earth gravity of 9.80665 m/s2. 1 N (Earth) = 0.101971621297793 kg.