Answer:

and

Explanation:
See attached figure.
E due to sphere
E due to particule
(1)
according to the law of gauss and superposition Law:
; electric field due to the small sphere with r1=R/4


then:
(2)
on the other hand, for the particule:

⇒
(3)
We replace (2) y (3) in (1):


--------------------
if R<x<2R AND 

remember that 
then:

solving:


but: R<x<2R
so : 
<h2>
a)Acceleration due to gravity on the surface of the Sun is 274.21 m/s²</h2><h2>b)
Factor of increase in weight is 27.95</h2>
Explanation:
a) Acceleration due to gravity

Here we need to find acceleration due to gravity of Sun,
G = 6.67259 x 10⁻¹¹ N m²/kg²
Mass of sun, M = 1.989 × 10³⁰ kg
Radius of sun, r = 6.957 x 10⁸ m
Substituting,

Acceleration due to gravity on the surface of the Sun = 274.21 m/s²
b) Acceleration due to gravity in earth = 9.81 m/s²
Ratio of gravity = 274.21/9.81 = 27.95
Weight = mg
Factor of increase in weight = 27.95
Answer:
16.2 s
Explanation:
Given:
Δx = 525 m
v₀ = 0 m/s
a = 4.00 m/s²
Find: t
Δx = v₀ t + ½ at²
525 m = (0 m/s) t + ½ (4.00 m/s²) t²
t = 16.2 s
Answer:
conductor
Explanation:
A "conductor" is a material that allows the charges to pass freely from one body to the other. This causes a movement among the electrons and this means that<em> the charge will be passed entirely to the object receiving it.</em> This is also called <em>"conductive material."</em>
Examples of conductors are: <em>copper, aluminum, gold, silver, seawater, etc.</em>
The opposite of conductors are called "insulators." These do not allow the free movement of charges from one object to the other.
Examples of insulators: <em>plastic, rubber, paper, glass, wool, dry air, etc.</em>