Answer: <u>elastically</u> deformed or <u>non-permanently</u> deformed
Explanation:
According to classical mechanics, there are two types of deformations:
-Plastic deformation (also called irreversible or permanent deformation), in which the material does not return to its original form after removing the applied force, therefore it is said that the material was permanently deformed.
This is because the material undergoes irreversible thermodynamic changes while it is subjected to the applied forces.
-Elastic deformation (also called reversible or non-permanent deformation), in which the material returns to its original shape after removing the applied force that caused the deformation.
In this case t<u>he material also undergoes thermodynamic changes, but these are reversible, causing an increase in its internal energy by transforming it into elastic potential energy.</u>
<u />
Therefore, the situation described in the question is related to elastic deformation.
Answer:
<h2>
6.36 cm</h2>
Explanation:
Using the formula to first get the image distance
1/f = 1/u+1/v
f = focal length of the lens
u = object distance
v = image distance
Given f = 16.0 cm, u = 24.8 cm
1/v = 1/16 - 1/24.8
1/v = 0.0625-0.04032
1/v = 0.02218
v = 1/0.02218
v = 45.09 cm
To get the image height, we will us the magnification formula.
Mag = v/u = Hi/H
Hi = image height = ?
H = object height = 3.50 cm
45.09/24.8 = Hi/3.50
Hi = (45.09*3.50)/24.8
Hi = 6.36 cm
The image height is 6.36 cm
Answer:
C
Explanation:
Im not sure but I did somthing simalier
Answer:
block velocity v = 0.09186 = 9.18 10⁻² m/s and speed bollet v₀ = 11.5 m / s
Explanation:
We will solve this problem using the concepts of the moment, let's try a system formed by the two bodies, the bullet and the block; In this system all scaffolds during the crash are internal, consequently, the moment is preserved.
Let's write the moment in two moments before the crash and after the crash, let's call the mass of the bullet (m) and the mass of the Block (M)
Before the crash
p₀ = m v₀ + 0
After the crash
= (m + M) v
p₀ = 
m v₀ = (m + M) v (1)
Now let's lock after the two bodies are joined, in this case the mechanical energy is conserved, write it in two moments after the crash and when you have the maximum compression of the spring
Initial
Em₀ = K = ½ m v2
Final
E
= Ke = ½ k x2
Emo = E
½ m v² = ½ k x²
v² = k/m x²
Let's look for the spring constant (k), with Hook's law
F = -k x
k = -F / x
k = - 0.75 / -0.25
k = 3 N / m
Let's calculate the speed
v = √(k/m) x
v = √ (3/8.00) 0.15
v = 0.09186 = 9.18 10⁻² m/s
This is the spped of the block plus bullet rsystem right after the crash
We substitute calculate in equation (1)
m v₀ = (m + M) v
v₀ = v (m + M) / m
v₀ = 0.09186 (0.008 + 0.992) /0.008
v₀ = 11.5 m / s