1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Luba_88 [7]
3 years ago
15

Help please ASAP !!!

Physics
1 answer:
mezya [45]3 years ago
7 0
What’s the weight and how high is the clif
You might be interested in
a baseball pitcher throws a fastball at 42 meters per second. if the batter is 18 meters from the pitcher, approximately how muc
lapo4ka [179]
T=D/v = 18/42 = 43 seconds
6 0
3 years ago
Read 2 more answers
2. We know that the Earth is moving around the sun. When we look at the sky we see
marin [14]

Answer:

Answer: The Sun, the Moon, the planets, and the stars all rise in the east and set in the west. And that's because Earth spins -- toward the east. ... Earth rotates or spins toward the east, and that's why the Sun, Moon, planets, and stars all rise in the east and make their way westward across the sky.

6 0
3 years ago
Determine the CM of a rod assuming its linear mass density λ (its mass per unit length) varies linearly from λ = λ0 at the left
Dahasolnce [82]

Answer:

x_c= \dfrac{5}{9}L

I=\dfrac {7}{12}\lambda_ 0 L^3

Explanation:

Here mass density of rod is varying so we have to use the concept of integration to find mass and location of center of mass.

At any  distance x from point A mass density

\lambda =\lambda_0+ \dfrac{2\lambda _o-\lambda _o}{L}x

\lambda =\lambda_0+ \dfrac{\lambda _o}{L}x

Lets take element mass at distance x

dm =λ dx

mass moment of inertia

dI=\lambda x^2dx

So total moment of inertia

I=\int_{0}^{L}\lambda x^2dx

By putting the values

I=\int_{0}^{L}\lambda_ ox+ \dfrac{\lambda _o}{L}x^3 dx

By integrating above we can find that

I=\dfrac {7}{12}\lambda_ 0 L^3

Now to find location of center mass

x_c = \dfrac{\int xdm}{dm}

x_c = \dfrac{\int_{0}^{L} \lambda_ 0(1+\dfrac{x}{L})xdx}{\int_{0}^{L} \lambda_0(1+\dfrac{x}{L})}

Now by integrating the above

x_c=\dfrac{\dfrac{L^2}{2}+\dfrac{L^3}{3L}}{L+\dfrac{L^2}{2L}}

x_c= \dfrac{5}{9}L

So mass moment of inertia I=\dfrac {7}{12}\lambda_ 0 L^3 and location of center of mass  x_c= \dfrac{5}{9}L

8 0
3 years ago
A pin fin of uniform, cross-sectional area is fabricated of an aluminum alloy (k = 160 W/m-K). The fin diameter is D = 4 mm, and
frozen [14]

Answer:

Given that

D= 4 mm

K = 160 W/m-K

h=h = 220 W/m²-K

ηf = 0.65

We know that

m=\sqrt{\dfrac{hP}{KA}}

For circular fin

m=\sqrt{\dfrac{4h}{KD}}

m=\sqrt{\dfrac{4\times 220}{160\times 0.004}}

m = 37.08

\eta_f=\dfrac{tanhmL}{mL}

0.65=\dfrac{tanh37.08L}{37.08L}

By solving above equation we get

L= 36.18 mm

The effectiveness for circular fin given as

\varepsilon =\dfrac{2\ tanhmL}{\sqrt{\dfrac{hD}{K}}}

\varepsilon =\dfrac{2\ tanh(37.08\times 0.03618)}{\sqrt{\dfrac{220\times 0.004}{160}}}

ε = 23.52

5 0
3 years ago
Read 2 more answers
The black hole is___<br> times smaller that the star.<br> I need answers please
mojhsa [17]

Answer:

The answer is 24 (for the first question).

Explanation:

<h2><u><em>PLEASE MARK AS BRAINLIEST!!!!!</em></u></h2>
3 0
2 years ago
Other questions:
  • Blocks A (mass 2.00 kg ) and B (mass 14.00 kg , to the right of A) move on a frictionless, horizontal surface. Initially, block
    11·1 answer
  • Is this right? Please tell me why its wrong or right
    12·1 answer
  • How can light interact with wood
    11·1 answer
  • When are ionic bonds formed
    9·1 answer
  • A car traveling with an initial velocity of 10 m/s accelerates at a constant rate of 2.2 m/s^2 for 2 seconds. What distance does
    7·2 answers
  • An ideal gas initially at 4.00atm and 350 K is permitted
    5·1 answer
  • Witch unit is used to measure mass in the metric system
    8·2 answers
  • An object is traveling with a constant velocity of 5 m/s. How far will it have gone after 7 s?
    7·1 answer
  • URGENT PLEASE HELP!!!! GIVING BRAINLIEST!! If you answer this correctly ill answer some of your questions you have posted! (60pt
    12·1 answer
  • When does a bouncing ball have the least amount of kinetic energy?
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!