Answer:
Boron (B) is the element whose IE matches with our data.
Electronic Configuration of boron: 
Explanation:
Ionization Energy (IE):
It is the minimum amount of energy which is required to remove the lose electron. If the electron is closer to the nucleus then greater amount of energy is required to remove the electron.
If we look from left to right in a period, ionization energy increases due stability of valance shell.
From the data given to us:
IE₁ = 801
IE₂ = 2427
IE₃ = 3659
IE₄ = 25,022
IE₅ = 32,822
Boron (B) is the element whose IE matches with our data.
Electronic Configuration of boron: 
Boron has 5 electrons (3 in valance shell) that's why it has 5 Ionization Energies.
Answer: The answer is D.
Explanation: The warm water will cause the sugar to dissolve quicker.
Answer:
V H2O = 170.270 mL
Explanation:
- QH2O ( heat gained) = Qcoffe ( heat ceded)
⇒ Q = m<em>C</em>ΔT
∴ m: mass (g)
∴ <em>C</em>:<em> </em>specific heat
assuming:
- δ H2O = δ Coffe = 1.00 g/mL
- <em>C</em> H2O = <em>C</em> coffe = 4.186 J/°C.g....from literature
⇒ Q coffe = (mcoffe)(C coffe)(60 - 95)
∴ m coffe = (180mL)(1.00 g/mL) = 180 g coffe
⇒ Q = (180g)(4.186 J/°C.g)(-35°C) = - 26371.8 J
⇒ Q H2O = 26371.8 J = (m)(4.186 J/°C.g)(60 - 23)
⇒ (26371.8 J)/(154.882 J/g) = m H2O
⇒ m H2O = 170.270 g
⇒ V H2O = (170.270 g)(mL/1.00g) = 170.270 mL
Usually the controlled experiment is the one that is not tested so they look at the experimental experiment to find the differences. Sorry if this doesn't answer your question.
The standard enthalpy of formation for chlorine is zero but the standard entropy is larger than 0 because it is the elemental state of chlorine.
The standard enthalpy of formation for chlorine is zero because cl2 is the elemental state of chlorine and it does not require any energy for the formation of the standard state of chlorine.
The entropy of any system cannot be negative. It can only be positive or zero.
The entropy of a system will become zero only at a absolute zero temperature.
That's why the entropy of chlorine in elemental state is more than zero because absolutely zero temperature can't be obtained.
To know more about entropy, visit,
brainly.com/question/6364271
#SPJ4