Answer:
The force per unit length (N/m) on the top wire is 16.842 N/m
Explanation:
Given;
distance between the two parallel wire, d = 38 cm = 0.38 m
current in the first wire, I₁ = 4.0 kA
current in the second wire, I₂ = 8.0 kA
Force per unit length, between two parallel wires is given as;

where;
μ₀ is constant = 4π x 10⁻⁷ T.m/A
Substitute the given values in the above equation and calculate the force per unit length

Therefore, the force per unit length (N/m) on the top wire is 16.842 N/m
Answer:
Explanation:
Atmospheric pressure = 7 x 10⁴ Pa
force on a disk-shaped region 2.00 m in radius at the surface of the ocean due to atmosphere = pressure x area
= 7 x 10⁴ x 3.14 x 2 x 2
= 87.92 x 10⁴ N
b )
weight, on this exoplanet, of a 10.0 m deep cylindrical column of methane with radius 2.00 m
Pressure x area
height x density x acceleration of gravity x π r²
= 10 x 415 x 6.2 x 3.14 x 2 x 2
=323168.8 N
c ) Pressure at a depth of 10 m
atmospheric pressure + pressure due to liquid column
= 7 x 10⁴ + 10 x 415 x 6.2 ( hρg)
= 7 x 10⁴ + 10 x 415 x 6.2
(7 + 2.57 )x 10⁴ Pa
9.57 x 10⁴ Pa
That would be a frequency of 1.2666... beats per second. This can be phrased as your heart beats at 1.27 Hz.
Answer: 
Explanation:
We know that force acting on an object due to Earth's gravity on the surface is given by:

where g is the acceleration due to gravity, r would be radius of Earth, M is the mass of Earth and G is the gravitational constant.
It is given that at pole, g = 9.830 m/s² and r = 6371 km = 6371 × 10³ m



Hence, Earth's mass is 
With 250 grams pullling to the right and 100 grams pulling towards A, you will have some movement towards the right and some movement towards A. The resultant vector will be angled between those two directions.