Answer:
Explanation:
Initial moment of inertia of the earth I₁ = 2/5 MR² , M is mss of the earth and R is the radius . If ice melts , it forms an equivalent shell of mass 2.3 x 10¹⁹ Kg
Final moment of inertia I₂ = 2/5 M R² + 2/3 x 2.3 x 10¹⁹ x R²
For change in period of rotation we shall apply conservation of angular momentum law
I₁ ω₁ = I₂ ω₂ , ω₁ and ω₂ are angular velocities initially and finally .
I₁ / I₂ = ω₂ / ω₁
I₁ / I₂ = T₁ / T₂ , T₁ , T₂ are time period initially and finally .
T₂ / T₁ = I₂ / I₁
(2/5 M R² + 2/3 x 2.3 x 10¹⁹ x R²) / 2/5 MR²
1 + 5 / 3 x 2.3 x 10¹⁹ / M
= 1 + 5 / 3 x 2.3 x 10¹⁹ / 5.97 x 10²⁴
= 1 + .0000064
T₂ = 24 (1 + .0000064)
= 24 hours + .55 s
change in length of the day = .55 s .
The magnitude (in N) of the force she must exert on the wrench is 150.1 N.
<h3>
Force exerted by the wrench</h3>
The force exerted by the wrench is calculated using torque formula as follows;
torque, τ = F x r x sinθ
where;
- F is the applied force
- r is the perpendicular distance if force applied
F = τ /(r sinθ)
F = (39) / (0.3 sin 60)
F = 150.1 N
Thus, the magnitude (in N) of the force she must exert on the wrench is 150.1 N.
Learn more about torque here: brainly.com/question/14839816
#SPJ1
Answer: 1.28 sec
Explanation:
Assuming that the glow following the collision was produced instantaneously, as the light propagates in a straight line from Moon to the Earth at a constant speed, we can get the time traveled by the light applying velocity definition as follows:
V = ∆x / ∆t
Solving for ∆t, we have:
∆t = ∆x/v = ∆x/c = 3.84 108 m / 3.8 108 m/s = 1.28 sec
Answer:
C. Using controlled conditions
Explanation:
I did the quiz and B turned out to be wrong. D just doesn't make sense. Although A can be true in some experiments, it's not always the case.
Answer:
3.53×10⁶ N/c due west
Explanation:
From the question
E = F'/q........................ Equation 1
Where E = Electric Field, F = Net Force, q = Charge.
But,
F' = F₂-F₁...................... Equation 2
Substitute equation 2 into equation 1
E = (F₂-F₁)/q................ Equation 3
Given: F₁ = 3 N due east, F₂ = 15 N due west, q = 3.4×10⁻⁶ C
Substitute these values into equation 1
E = (15-3)/(3.4×10⁻⁶)
E = 12/(3.4×10⁻⁶)
E = 3.53×10⁶ N/c due west