The frequency of a simple harmonic oscillator such as a spring-mass system is given by

where
k is the spring constant
m is the mass attached to the spring.
Re-arranging the formula, we get:

and since we know the constant of the spring:

and the frequency of oscillation:
f=1.00 Hz
we can find the value of the mass attached to it:
The correct answers among all the other choices are D.) reflection from wet asphalt and E.) refraction from a water surface. These materials would result in horizontally polarized light. Thank you for posting your question. I hope this answer helped you. Let me know if you need more help.
Answer:
c.) 25 N
Explanation:
We find the volume of the brick, knowing that the volume of a cube is given by the formula:

being l the side of the cube, which in this case is 10 cm or 0,1 m. Now we find the mass of the object, knowing the density and the Volume of the cube:

We find the weight by multiplying the mass of the object with the gravity constant.

(a) Let's convert the final speed of the car in m/s:

The kinetic energy of the car at t=19 s is

(b) The average power delivered by the engine of the car during the 19 s is equal to the work done by the engine divided by the time interval:

But the work done is equal to the increase in kinetic energy of the car, and since its initial kinetic energy is zero (because the car starts from rest), this translates into

(c) The instantaneous power is given by

where F is the force exerted by the engine, equal to F=ma.
So we need to find the acceleration first:

And the problem says this acceleration is constant during the motion, so now we can calculate the instantaneous power at t=19 s: