Answer:

Explanation:
Given that,
Mass of the sample, m = 275 g
It required 10.75 kJ of heat to change its temperature from 21.2 °C to its melting temperature, 327.5 °C.
We need to find the specific heat of the metal. The heat required by a metal sample is given by :

c is specific heat of the metal

So, the specific heat of metal is
.
<h3>
Answer:</h3>
78.75 K
<h3>
Explanation:</h3>
<u>We are given;</u>
- Initial pressure, P₁ = 500 torr
- Initial temperature,T₁ = 225 K
- Initial volume, V₁ = 3.3 L
- Final volume, V₂ = 2.75 L
- Final pressure, P₂ = 210 torr
We are required to calculate the new temperature, T₂
- To find the new temperature, T₂ we are going to use the combined gas law;
- According to the combined gas law;
P₁V₁/T₁ = P₂V₂/T₂
We can calculate the new temperature, T₂;
Rearranging the formula;
T₂ =(P₂V₂T₁) ÷ (P₁V₁)
= (210 torr × 2.75 L × 225 K) ÷ (500 torr × 3.3 L)
= 78.75 K
Therefore, the new volume of the sample is 78.75 K
When trying to clean muddy, dirty river water, FILTRATION would work best
Answer : The amount of formaldehyde permissible are, 
Explanation : Given,
Density of air =

First we have to calculate the mass of air.



Now we have to calculate the amount of formaldehyde.
Permissible exposure level of formaldehyde = 0.75 ppm = 
Amount of formaldehyde in 7.2 g of formaldehyde = 
Amount of formaldehyde in 7.2 g of formaldehyde = 
Thus, the amount of formaldehyde permissible are, 