a. volume of NO : 41.785 L
b. mass of H2O : 18 g
c. volume of O2 : 9.52 L
<h3>Further explanation</h3>
Given
Reaction
4 NH₃ (g) + 5 O2 (g) → 4 NO (g) + 6 H2O (l)
Required
a. volume of NO
b. mass of H2O
c. volume of O2
Solution
Assume reactants at STP(0 C, 1 atm)
Products at 1000 C (1273 K)and 1 atm
a. mol ratio NO : O2 from equation : 4 : 5, so mo NO :

volume NO at 1273 K and 1 atm

b. 15 L NH3 at STP ( 1mol = 22.4 L)

mol ratio NH3 : H2O from equation : 4 : 6, so mol H2O :

mass H2O(MW = 18 g/mol) :

c. mol NO at 1273 K and 1 atm :

mol ratio of NO : O2 = 4 : 5, so mol O2 :

Volume O2 at STP :

Answer:
Depends on conduction and the texture
Explanation:
it feels softer because tile is expose to the coldness in your building and carpet feels warmer because the texture of it
Answer : (b) The rate law expression for the reaction is:
![\text{Rate}=k[SO_2]^2[O_2]](https://tex.z-dn.net/?f=%5Ctext%7BRate%7D%3Dk%5BSO_2%5D%5E2%5BO_2%5D)
Explanation :
Rate law : It is defined as the expression which expresses the rate of the reaction in terms of molar concentration of the reactants with each term raised to the power their stoichiometric coefficient of that reactant in the balanced chemical equation.
The general reaction is:

The general rate law expression for the reaction is:
![\text{Rate}=k[A]^a[B]^b](https://tex.z-dn.net/?f=%5Ctext%7BRate%7D%3Dk%5BA%5D%5Ea%5BB%5D%5Eb)
where,
a = order with respect to A
b = order with respect to B
R = rate law
k = rate constant
and
= concentration of A and B reactant
Now we have to determine the rate law for the given reaction.
The balanced equations will be:

In this reaction,
and
are the reactants.
The rate law expression for the reaction is:
![\text{Rate}=k[SO_2]^2[O_2]^1](https://tex.z-dn.net/?f=%5Ctext%7BRate%7D%3Dk%5BSO_2%5D%5E2%5BO_2%5D%5E1)
or,
![\text{Rate}=k[SO_2]^2[O_2]](https://tex.z-dn.net/?f=%5Ctext%7BRate%7D%3Dk%5BSO_2%5D%5E2%5BO_2%5D)
What question are you talking about?