Newton's principle
newton's 2nd law of motion where F=ma
Answer:
B. Ball Y will travel at a speed less than 5 m/s in the opposite direction of travel as before the collision.
Explanation:
Impulse created by ball Y on ball X = 40 x 1/6 Ns
Ball X will also create impulse 40 / 6 on ball Y .
impulse = change in momentum .
impulse in Y = change in momentum in Y .
Initial momentum of Y = .5 x 5 = 2.5
Let final velocity of Y after collision be v in opposite direction .
change in momentum of Y = v - (-2.5 )
so,
v + 2.5 = 40 / 6 = 6.67
v = 4.17 m / s .
Option B is correct .
B. Ball Y will travel at a speed less than 5 m/s in the opposite direction of travel as before the collision.
Answer:
7.1 m/s
Explanation:
First, find the time it takes for the fish to reach the water.
Given in the y direction:
Δy = 6.1 m
v₀ = 0 m/s
a = 9.8 m/s²
Find: t
Δy = v₀ t + ½ at²
6.1 m = (0 m/s) t + ½ (9.8 m/s²) t²
t = 1.12 s
Next, find the velocity needed to travel 7.9 m in that time.
Given in the x direction:
Δx = 7.9 m
a = 0 m/s²
t = 1.12 s
Find: v₀
Δx = v₀ t + ½ at²
7.9 m = v₀ (1.12 s) + ½ (0 m/s²) (1.12 s)²
v₀ = 7.1 m/s
Answer:

Explanation:
The formula that relates the luminosity of a star (L) to its radius (R) and the temperature (T) is

For star B, we can write:

For star A, we have

So the luminosity of star A is
