From the momentum conservation we know that the initial momentum is equal to the final momentum. The momentum in a singular way can be defined as the product between the mass and the velocity of an object. In the presented system, however, there are two objects, therefore the mass of both and the speed of both, before and after the collision must be taken into account. Mathematically we could describe this as
Here,
= Mass of each object
= Initial velocity of each object
= Final velocity of each object
From here we can realize that it is necessary to use the system on both cars to be able to predict what will happen either with their masses, or their speeds.
The correct answer is C.
Answer:
the answer is a because I saw it in a syllabus
There are several different types of spectrums that you could expect to find from
the gas cloud, but the best option from the list would be "<span>high-frequency spectrum".</span>
<span>C.
Sample C would be best, because the percentage of the energy
in an
incident wave that remains in a reflected wave from this material
is the
smallest.
The coefficient of absorption is the percentage of incident sound
that's absorbed. So the highest coefficient of absorption results in
the smallest </span><span>percentage of the energy in an
incident wave that remains.
That's what you want. </span>
A.Momentum Equation
m = mass = 75 kg
v = velocity = 18 m/s
P = momentum
Using the momentum equation , momentum is given as
P = mv
P = 75 x 18
P = 1350 kgm/s