Answer:
40sec
Explanation:
Data
Work = 440 J
Power= 11watt
time = ?
Power = work done/time
===> time = work done/power
= 440/11
= 40sec
Explanation:
It is given that,
Mass of the tackler, m₁ = 120 kg
Velocity of tackler, u₁ = 3 m/s
Mass, m₂ = 91 kg
Velocity, u₂ = -7.5 m/s
We need to find the mutual velocity immediately the collision. It is the case of inelastic collision such that,


v = -1.5 m/s
Hence, their mutual velocity after the collision is 1.5 m/s and it is moving in the same direction as the halfback was moving initially. Hence, this is the required solution.
Answer:Frequency = 3.525 Hertz
Explanation:In static equilibrium, kd =mg
Where k= effective spring constant of the spring.
mg= The weight of the car.
d= static deflection.
Therefore, w =SQRTg/d
w = SQRT 9.81/0.02
w= 22.15 rad/sec
Converting to Hertz unit for frequency
1 rad/s = 0.1591
22.15rad/s=?
22.15 × 0.1591= 3.525 hertz
Answer:
(A) 2.4 N-m
(B) 
(C) 315.426 rad/sec
(D) 1741.13 J
(E) 725.481 rad
Explanation:
We have given mass of the disk m = 4.9 kg
Radius r = 0.12 m, that is distance = 0.12 m
Force F = 20 N
(a) Torque is equal to product of force and distance
So torque
, here F is force and r is distance
So 
(B) Moment of inertia is equal to 
So 
Torque is equal to 
So angular acceleration 
(C) As the disk starts from rest
So initial angular speed 
Time t = 4.6 sec
From first equation of motion we know that 
So 
(D) Kinetic energy is equal to 
(E) From second equation of motion
