Answer: 5.8kg
Explanation:
F - mg sinΦ = ma
Given that
M=?
g= 9.8
Φ= 30
a= 2
F= 40 then
40 - 9.8 * m * sin 30 = 2 * m
40 = 2 * m + 9.8 * m * sin 30
40 = (2 + 9.8 * sin 30) m
m = 40 / (2 + 9.8 * 0.5)
m = 40 / (2 + 4.9)
m = 40 / 6.9
m = 5.797kg
m = 5.8kg
The variable that changes is the period of the motion.
<h3>What is simple harmonic motion?</h3>
The term simple harmonic motion refers to a regular repeating motion. The acceleration of the SHM is always directed towards the center. The spring is an example of a system undergoing simple harmonic motion.
From the description in the question, the variable that changes is the period of the motion.
Learn more about simple harmonic motion: brainly.com/question/17315536
Explanation:
1-How many moles of NazCOs are in 10.0 ml of a 2.0 M solution?
2-How many moles of NaCl are contained in 100.0 ml of a 0.20 M solution?
3- What weight (in grams) of H2SO4 would be needed to make 750.0 ml of
2.00 M solution?
4-What volume (in ml) of 18.0 M H2SO4 is needed to contain 2.45 g H2S04?
This is dependent on how many shells/layers/energy levels the element has. The first shell can only hold 2 electrons however every shell beyond that can hold 8 electrons
Answer:
The turnover number of the enzyme molecule bovine carbonic anhydrase = 67,272,727.27 s^–1.
Explanation:
Given:
The concentration of bovine carbonic anhydrase = total enzyme concentration = Et = 3.3 pmol⋅L^–1 = 3.3 × 10^–12 mol.L^–1
The maximum rate of reaction = Rmax (Vmax) = 222 μmol⋅L^–1⋅s^–1 = 222 × 10^–6 mol.L^–1⋅s^–1
The formula for the turnover number of an enzyme (kcat, or catalytic rate constant) = Rmax ÷ Et = 222 × 10^–6 mol.L^–1⋅s^–1 ÷ 3.3 × 10^–12 mol.L^–1 = 67,272,727.27 s^–1
Therefore, the turnover number of the enzyme molecule bovine carbonic anhydrase = 67,272,727.27 s^–1