To figure out the ratios of these compounds, it is important to remember that the charge of these compounds must be <em>
neutral</em>.
So in order to make them neutral, you must have specific ratios:

; This is true because they both have a charge of magnitude of 1.

; We need 3 chlorine atoms because we need to balance out the charge from the 3+ charge of aluminum - therefore since chlorine has a 1- charge, we need 3 atoms.

; The charges of the magnesium (2+) are balanced with the oxygen charge (2-).

; This is correct because if charges are like this, you must find the least common factor in order to know the ratio. The LCF is 6, therefore, for the atom with a 3+ charge, you need 2 of them, and for the atom with a 2- charge, you need 3 of them. This keeps the charge neutral.
Answer: The reactants are baking soda and vinegar. Baking soda is a white powder, and vinegar is a clear liquid. The products of this reaction are carbon dioxide, water, and sodium acetate. Carbon dioxide is a colorless gas, water is a colorless liquid, and sodium acetate is a white crystalline powder.
A chemical change can be seen in how the molecular formulas of the products are different from the reactants, since the reactants have chemically changed into completely different molecules.
Hope this helps
Answer:
When liquid water reaches the freezing point, it expands. After placing a sealed glass container full of water into the freezer, we might expect it to freeze, expand, and either crack or shatter the glass.
Explanation:
Answer:
We need 0.095 moles of ethanol
Explanation:
Step 1: Data given
Number of moles water = 0.095 moles
Step 2: The balanced equation
CH3CH2OH + O2 ⇒ H2O + CH3COOH
Step 3: Calculate moles of ethanol
For 1 mol ethanol we need 1 mol oxygen to produce 1 mol water and 1 mol acetic acid
For 0.095 moles water, we need 0.095 moles ethanol and 0.095 moles oxygen
We need 0.095 moles of ethanol