Unless you are a mutant....I don't think you would make it. I'm 5'8" and most people are 6'7" or less. It's bsically impossible to do. :)
That would be a nebula, which is an interstellar cloud of hydrogen gas, dust, and plasma. It is the first stage of a star's cycle.
Answer: The change in velocity is 20mph
Explanation: The change in velocity is the difference between the final velocity and the initial velocity.
The initial velocity is 0 and the final velocity is 20mph.
Using the formula dV=Vf-Vi
dV=20-0
dV=20mph North
Wow ! This is not simple. At first, it looks like there's not enough information, because we don't know the mass of the cars. But I"m pretty sure it turns out that we don't need to know it.
At the top of the first hill, the car's potential energy is
PE = (mass) x (gravity) x (height) .
At the bottom, the car's kinetic energy is
KE = (1/2) (mass) (speed²) .
You said that the car's speed is 70 m/s at the bottom of the hill,
and you also said that 10% of the energy will be lost on the way
down. So now, here comes the big jump. Put a comment under
my answer if you don't see where I got this equation:
KE = 0.9 PE
(1/2) (mass) (70 m/s)² = (0.9) (mass) (gravity) (height)
Divide each side by (mass):
(0.5) (4900 m²/s²) = (0.9) (9.8 m/s²) (height)
(There goes the mass. As long as the whole thing is 90% efficient,
the solution will be the same for any number of cars, loaded with
any number of passengers.)
Divide each side by (0.9):
(0.5/0.9) (4900 m²/s²) = (9.8 m/s²) (height)
Divide each side by (9.8 m/s²):
Height = (5/9)(4900 m²/s²) / (9.8 m/s²)
= (5 x 4900 m²/s²) / (9 x 9.8 m/s²)
= (24,500 / 88.2) (m²/s²) / (m/s²)
= 277-7/9 meters
(about 911 feet)
Answer:
Capacitive reactance is 132.6 Ω.
Explanation:
It is given that,
Capacitance, 
Voltage source, V = 20 volt
Frequency of source, f = 60 Hz
We need to find the capacitive reactance. It is defined as the reactance for a capacitor. It is given by :



So, the capacitive reactance of the capacitor is 132.6 Ω. Hence, this is the required solution.