Explanation:
It is given that,
Mass of person, m = 70 kg
Radius of merry go round, r = 2.9 m
The moment of inertia, 
Initial angular velocity of the platform, 
Part A,
Let
is the angular velocity when the person reaches the edge. We need to find it. It can be calculated using the conservation of angular momentum as :

Here, 


Solving the above equation, we get the value as :

Part B,
The initial rotational kinetic energy is given by :



The final rotational kinetic energy is given by :



Hence, this is the required solution.
Answer:
t = 1.41 sec.
Explanation:
If we assume that the acceleration of the blocks is constant, we can apply any of the kinematic equations to get the time since the block 2 was released till it reached the floor.
First, we need to find the value of acceleration, which is the same for both blocks.
If we take as our system both blocks, and think about the pulley as redirecting the force simply (as tension in the strings behave like internal forces) , we can apply Newton's 2nd Law, as they were moving along the same axis, aiming at opposite directions, as follows:
F = m₂*g - m₁*g = (m₁+m₂)*a (we choose as positive the direction of the acceleration, will be the one defined by the larger mass, in this case m₂)
⇒ a = (
= g/5 m/s²
Once we got the value of a, we can use for instance this kinematic equation, and solve for t:
Δx = 1/2*a*t² ⇒ t² = (2* 1.96m *5)/g = 2 sec² ⇒ t = √2 = 1.41 sec.
Answer: 1.22 m
Explanation:
The equation of motion in this situation is:
(1)
Where:
is the final height of the ball
is the initial height of the ball
is the vertical component of the initial velocity (assuming the ball was thrown vertically and there is no horizontal velocity)
is the time at which the ball lands
is the acceleration due gravity
So, with these conditions the equation is rewritten as:
(2)
(3)
Finally:

A light wave that hits the surface of a pool gets refracted and gives us an apparent image of the surface of the pool, following the concepts of refraction.
<u>Explanation:</u>
Let’s recall the concept of refraction when a light wave passes from medium of rarer to denser. There is a change in the speed of light while travelling from medium of rarer to denser.
There can be a change in the direction as well. This property is known as “Refraction” and the best example to see refraction is watching the surface of a clean pond, lake or pool.
When the light travels from a rarer medium (air) to a denser medium (water), it changes its angle of direction and gets refracted and hit to our eye lenses. With this, we see the surface of the pool at a changed angle and it seems to be a bit shallow than its original depth.