Answer:
The answer you have selected in the screenshot is correct.
Its tendency to react with oxygen is correct.
Hope this helps.
Answer:
The correct option is C
Explanation:
From the question we are told that
The reaction is

Generally
Here
is the change in enthalpy
is the change in the internal energy
is the difference between that number of moles of product and the number of moles of reactant
Looking at the reaction we can discover that the elements that was consumed and the element that was formed is
and
and this are both gases so the change would occur in the number of moles
So
The negative sign in the equation tell us that the enthalpy
would be less than the Internal energy 
Answer:
Number of Na ions in 14.5 g of NaCl is 1.49 × 10²³.
Number of Cl ions in 14.5 g of NaCl is 1.49 × 10²³.
Total number of ions = 1.49 × 10²³ + 1.49 × 10²³ = 2.98 × 10²³.
Explanation:
1 mole of any compound contains 6.023 × 10²³ molecules.
molecular weight of NaCl is 23 + 35.5 = 58.5 g.
so, 58.5 grams of NaCl makes 1 mole
⇒ 14.5 g of NaCl =
= 0.248 moles.
⇒ 0.248 mole contains 0.248 × 6.023×10²³ molecules
= 1.49 × 10²³ molecules.
And 1 molecule contains 1 Na ion and 1 Cl ion.
⇒ number of Na ions in 14.5 g of NaCl is 1.49 × 10²³.
⇒ number of Cl ions in 14.5 g of NaCl is 1.49 × 10²³.
Total number of ions = 1.49 × 10²³ + 1.49 × 10²³ = 2.98 × 10²³.
Answer:
Basically, paramagnetic and diamagnetic refer to the way a chemical species interacts with a magnetic field. More specifically, it refers to whether or not a chemical species has any unpaired electrons or not.
A diamagnetic species has no unpaired electrons, while a paramagnetic species has one or more unpaired electrons.
Now, I won't go into too much detail about crystal field theory in general, since I assume that you're familiar with it.
So, you're dealing with the hexafluorocobaltate(III) ion, [CoF6]3â’, and the hexacyanocobaltate(III) ion, [Co(CN)6]3â’.
You know that [CoF6]3â’ is paramagnetic and that [Co(CN)6]3â’ is diamagnetic, which means that you're going to have to determine why the former ion has unpaired electrons and the latter does not.
Both complex ions contain the cobalt(III) cation, Co3+, which has the following electron configuration
Co3+:1s22s22p63s23p63d6
For an isolated cobalt(III) cation, all these five 3d-orbitals are degenerate. The thing to remember now is that the position of the ligand on the spectrochemical series will determine how these d-orbtals will split.
More specifically, you can say that
a strong field ligand will produce a more significant splitting energy, Δ a weak field ligand will produce a less significant splitting energy, Δ
Now, the spectrochemical series looks like this
http://chemedu.pu.edu.tw/genchem/delement/9.htmhttp://chemedu.pu.edu.tw/genchem/delement/9.htm
Notice that the cyanide ion, CNâ’, is higher on the spectrochemical series than the fluoride ion, Fâ’. This means that the cyanide ion ligands will cause a more significant energy gap between the eg and t2g orbitals when compared with the fluoride ion ligands.
http://wps.prenhall.com/wps/media/objects/3313/3393071/blb2405.htmlhttp://wps.prenhall.com/wps/media...
In the case of the hexafluorocobaltate(III) ion, the splitting energy is smaller than the electron pairing energy, and so it is energetically favorable to promote two electrons from the t2g orbitals to the eg orbitals → a high spin complex will be formed.
This will ensure that the hexafluorocobaltate(III) ion will have unpaired electrons, and thus be paramagnetic.
On the other hand, in the case of the hexacyanocobaltate(III) ion, the splitting energy is higher than the electron pairing energy, and so it is energetically favorable to pair up those four electrons in the t2g orbitals → a low spin complex is formed.
Since it has no unpaired electrons, the hexacyanocobaltate(III) ion will be diamagnetic.
Hello!
When the final velocity is less than the initial velocity, this is deceleration
<h2>
Why?</h2>
Acceleration is defined as the physical magnitude that measures the change in velocity with time. The units to express acceleration are speed over time.
The equation for acceleration is: 
Where: a=acceleration, v=final velocity, vo=initial velocity, t=final time, to=initial time.
If the final velocity is less than the initial velocity, then the acceleration is negative, and that is called deceleration. An example of this is when a car brakes.
Have a nice day!