Answer:
λ = 5.65m
Explanation:
The Path Difference Condition is given as:
δ=
;
where lamda is represent by the symbol (λ) and is the wavelength we are meant to calculate.
m = no of openings which is 2
∴δ= 
n is the index of refraction of the medium in which the wave is traveling
To find δ we have;
δ= 
δ= 
δ= 
δ= 
δ= 
δ= 
δ= 82.15 -73.68
δ= 8.47
Again remember; to calculate the wavelength of the ocean waves; we have:
δ= 
δ= 8.47
8.47 = 
λ = 
λ = 5.65m
Answer:
A) if each astronaut breathes about 500 cm³, the total volume of air breathed in a year is 14716.8m³.
B) The Diameter of this spherical space station should be 30.4m
Explanation:
The breathing frequency (according to Rochester encyclopedia) is about 12-16 breath per minute. if we take the mean value (14 breath per minute), we can estimate the total breaths of a person along a year:

If we multiply this for the number of people in the station and the volume each breath needs, we obtain the volume breathed in a year.
The volume of a sphere is:

So the diameter is:
![D=2r=2\sqrt[3]{\frac{3V_{sph}}{4\pi}} =30.4m](https://tex.z-dn.net/?f=D%3D2r%3D2%5Csqrt%5B3%5D%7B%5Cfrac%7B3V_%7Bsph%7D%7D%7B4%5Cpi%7D%7D%20%3D30.4m)
Wee see rainbows due to the geometries of the raindrops. when the sun shines behind, rays of light enter the raindrops and this light are refracted. The lights are then reflected from the back of the raindrop and refracted again as it passes the rain drop. Refraction in this sense is the cause for splitting the light into several colors.
Kinetic friction (also referred to as dynamic friction) is the force that resists the relative movement of the surfaces once they're in motion.
https://www.khanacademy.org › stat...
Static and kinetic friction example (video) | Khan Academy
Answer a would be static friction
Answer b is fluid friction
(Air resistance is fluid friction. Fluid friction is the friction experienced by objects which are moving in a fluid and the air is a fluid.)
Answer c is static friction
ANSWER D IS KINETIC FRICTION
Hope this helps :D
Your question has been heard loud and clear.
Well it depends on the magnitude of charges. Generally , when both positive charges have the same magnitude , their equilibrium point is towards the centre joining the two charges. But if magnitude of one positive charge is higher than the other , then the equilibrium point will be towards the charge having lesser magnitude.
Now , a negative charge is placed in between the two positive charges. So , if both positive charges have same magnitude , they both pull the negative charge towards each other with an equal force. Thus the equilibrium point will be where the negative charge is placed because , both forces are equal , and opposite , so they cancel out each other at the point where the negative charge is placed. However if they are of different magnitudes , then the equilibrium point will be shifted towards the positive charge having less magnitude.
Thank you