Answer:
Hydrogen: -141 kJ/g
Methane: -55kJ/g
The energy released per gram of hydrogen in its combustion is higher than the energy released per gram of methane in its combustion.
Explanation:
According to the law of conservation of the energy, the sum of the heat released by the combustion and the heat absorbed by the bomb calorimeter is zero.
Qc + Qb = 0
Qc = -Qb [1]
We can calculate the heat absorbed by the bomb calorimeter using the following expression.
Q = C . ΔT
where,
C is the heat capacity
ΔT is the change in the temperature
<h3>Hydrogen</h3>
Qc = -Qb = -C . ΔT = -(11.3 kJ/°C) . (14.3°C) = -162 kJ
The heat released per gram of hydrogen is:

<h3>Methane</h3>
Qc = -Qb = -C . ΔT = -(11.3 kJ/°C) . (7.3°C) = -82 kJ
The heat released per gram of methane is:

Answer:
Misalnya organ itu adalah kedua tangan kita,maka keadaan suatu manusia tsb tdk akan mempunyai kedua lengannya dan otomatis ia jg sulit untuk melakukan aktivitas sprti: makan,minum,mengambil sesuatu,menulis,dll
Explanation:
The problem you have written you almost have it solved. Take the moles that you have calculated and multiply that by the molecular weight to get the grams.
The STP problem:
use the moles you calculated along with 1 atm for Pressure, and 273 for the temperature and plug into the PV = nRT equation. (also use 0.0821 for R)
From there you can solve for the volume
Hope this helps!
Answer:
yes
Explanation:
Testing scientific ideas
Testing Ideas. Testing hypotheses and theories is at the core of the process of science. ... match actual results observation, that lends support.
Answer:
B
Explanation:
the candle is hot so the first energy form should be heat. u could now just eliminate the rest but for further notice. the heat melts the wax in the candle, which is a physical change but also the thread is burning out which is a chemical change then light follows