Answer:
The substances in a mixture can be separated using physical methods such as filtration, freezing, and distillation.
There is little, see Enthalpy of mixing, or no energy change when a mixture forms.
Mixtures have variable compositions, while compounds have a fixed, definite formula.
Explanation:
Answer:
-56.1kJ/mol
Explanation:
The reaction between HCl and NaOH is:
NaOH + HCl → NaCl + H₂O + ΔH
<em>Where ΔH is heat change in the reaction.</em>
<em />
As the temperature of the solution increases, the heat is released and ΔH < 0
The heat released in the reaction is obtained using coffe-cup calorimeter equation:
Q = C×m×ΔT
<em>Where Q is heat</em>
<em>C is specific heat of the solution (4.184J/g°C)</em>
<em>m is mass of solution: Assuming density = 1g/mL, 100mL of solution = 100g</em>
<em>And ΔT is change in temperature (13.4°C)</em>
<em />
Replacing:
Q = C×m×ΔT
Q = -4.184J/g°C×100g×13.4
Q = -5606.6J
Now, in the reaction you have:
<em>Moles HCl:</em>
0.050L * (2.2mol/L) = 0.11 moles
<em>Moles NaOH:</em>
0.050L * (2.0mol/L) = 0.1 moles
That means the moles of reaction are 0.1 moles, and heat change in the chemical reaction is:
5606.6J / 0.1 mol = 56066J =
<h3>-56.1kJ/mol</h3>
<em />
Answer:

Explanation:
Assume the reaction is the combustion of propane.
Word equation: propane plus oxygen produces carbon dioxide and water
Chemical eqn: C₃H₈(g) + O₂(g) ⟶ CO₂(g) + H₂O(g)
Balanced eqn: C₃H₈(g) + 5O₂(g) ⟶ 3CO₂(g) + 4H₂O(g)
(a) Table of enthalpies of formation of reactants and products

(b)Total enthalpies of reactants and products

ΔᵣH° is negative, so the reaction is exothermic.
Answer:
P = 162 KPa
Explanation:
Given data:
Number of moles = 2 mol
Volume of gas = 30.0 L
Temperature of gas = 293 K
Pressure of gas = ?
Solution:
The given problem will be solve by using general gas equation,
PV = nRT
P= Pressure
V = volume
n = number of moles
R = general gas constant = 0.0821 atm.L/ mol.K
T = temperature in kelvin
P = nRT/V
P = 2 mol ×0.0821 atm.L/ mol.K ×293 K/ 30.0 L
P = 48.11 atm.L/ 30.0 L
P = 1.6 atm
atm to kelvin:
1.6×101 = 162 KPa