Energy= 2381 joules
heat= Mass(kg) *change in temperature(K) * Cp
2381=0.155*(15)*Cp
Cp=1024 J/kg K
To determine the empirical formula and the molecular formula of the compound, we assume a basis of the compound of 100 g. We do as follows:
Mass Moles
K 52.10 52.10/39.10 = 1.33 1.33/1.32 ≈ 1
C 15.8 15.8/12 = 1.32 1.32/1.32 ≈ 1
O 32.1 32.1 / 16 = 2.01 2.01/1.32 ≈ 1.5
The empirical formula would most likely be KCO.
The molecular formula would be K2C2O3.
6.02 x10^23 atom
3.5g x 1mol/63.55g Cu x 6.02 x 10^23/ 1mol=
3.32 x 10^22 atoms
Ionic compounds<span> in solution react </span>faster<span> than molecular </span>compounds<span>. This </span>is <span>because </span>Ionic compounds<span> break apart to form free </span>ions. Therefore, there are no bonds<span> to break </span>so<span> the </span><span>reaction is fast</span>
Alloys are supposed to give greater strength to metals, which is why gold is mixed with others to make it harder. They have greater strength and are more resistant to erosion.