Answer:
a) x = v₀² sin 2θ / g
b) t_total = 2 v₀ sin θ / g
c) x = 16.7 m
Explanation:
This is a projectile launching exercise, let's use trigonometry to find the components of the initial velocity
sin θ =
/ vo
cos θ = v₀ₓ / vo
v_{oy} = v_{o} sin θ
v₀ₓ = v₀ cos θ
v_{oy} = 13.5 sin 32 = 7.15 m / s
v₀ₓ = 13.5 cos 32 = 11.45 m / s
a) In the x axis there is no acceleration so the velocity is constant
v₀ₓ = x / t
x = v₀ₓ t
the time the ball is in the air is twice the time to reach the maximum height, where the vertical speed is zero
v_{y} = v_{oy} - gt
0 = v₀ sin θ - gt
t = v_{o} sin θ / g
we substitute
x = v₀ cos θ (2 v_{o} sin θ / g)
x = v₀² /g 2 cos θ sin θ
x = v₀² sin 2θ / g
at the point where the receiver receives the ball is at the same height, so this coincides with the range of the projectile launch,
b) The acceleration to which the ball is subjected is equal in the rise and fall, therefore it takes the same time for both parties, let's find the rise time
at the highest point the vertical speed is zero
v_{y} = v_{oy} - gt
v_{y} = 0
t = v_{oy} / g
t = v₀ sin θ / g
as the time to get on and off is the same the total time or flight time is
t_total = 2 t
t_total = 2 v₀ sin θ / g
c) we calculate
x = 13.5 2 sin (2 32) / 9.8
x = 16.7 m
I believe the answer is B.
Answer:
6.86 N
Explanation:
Applying,
F = mg............... Equation 1
Where F = Force exerted by gravity on the mass, m = mass, g = acceleration due to gravity
Note: The Force exerted by gravity on the mass is thesame as the weight of the body.
From the question,
Given: m = 700 g = (700/1000) = 0.7 kg
Constant: g = 9.8 m/s²
Substitute these values into equation 1
F = 9.8(0.7)
F = 6.86 N
Given Information:
Length of wire = 132 cm = 1.32 m
Magnetic field = B = 1 T
Current = 2.2 A
Required Information:
(a) Torque = τ = ?
(b) Number of turns = N = ?
Answer:
(a) Torque = 0.305 N.m
(b) Number of turns = 1
Explanation:
(a) The current carrying circular loop of wire will experience a torque given by
τ = NIABsin(θ) eq. 1
Where N is the number of turns, I is the current in circular loop, A is the area of circular loop, B is the magnetic field and θ is angle between B and circular loop.
We know that area of circular loop is given by
A = πr²
where radius can be written as
r = L/2πN
So the area becomes
A = π(L/2πN)²
A = πL²/4π²N²
A = L²/4πN²
Substitute A into eq. 1
τ = NI(L²/4πN²)Bsin(θ)
τ = IL²Bsin(θ)/4πN
The maximum toque occurs when θ is 90°
τ = IL²Bsin(90)/4πN
τ = IL²B/4πN
torque will be maximum for N = 1
τ = (2.2*1.32²*1)/4π*1
τ = 0.305 N.m
(b) The required number of turns for maximum torque is
N = IL²B/4πτ
N = 2.2*1.32²*1)/4π*0.305
N = 1 turn