The answer is D-Testable
Hope this helps
Answer:
2.464 cm above the water surface
Explanation:
Recall that for the cube to float, means that the volume of water displaced weights the same as the weight of the block.
We calculate the weight of the block multiplying its density (0.78 gr/cm^3) times its volume (11.2^3 cm^3):
weight of the block = 0.78 * 11.2^3 gr
Now the displaced water will have a volume equal to the base of the cube (11.2 cm^2) times the part of the cube (x) that is under water. Recall as well that the density of water is 1 gr/cm^3.
So the weight of the volume of water displaced is:
weight of water = 1 * 11.2^2 * x
we make both weight expressions equal each other for the floating requirement:
0.78 * 11.2^3 = 11.2^2 * x
then x = 0.78 * 11.2 cm = 8.736 cm
This "x" is the portion of the cube under water. Then to estimate what is left of the cube above water, we subtract it from the cube's height (11.2 cm) as follows:
11.2 cm - 8.736 cm = 2.464 cm
Answer:
Explanation:
The most important thing to remember about parabolic motion in physics is that when an object reaches its max height, the velocity right there at the highest point is 0. Use this one-dimensional motion equation to solve this problem:
v = v₀ + at and filling in:
0 = v₀ + (-9.8)(4.0) **I put in 4.0 for time so we have more than just 1 sig fig here**
0 = v₀ - 39 and
-v₀ = -39 so
v₀ = 39 m/s
Answer:

so this is nearly red colour light
Explanation:
As we know that the interference of light from reflected light then the path difference is given as

now we know that for constructive interference of light the path difference is given as

so we will have

so we will have



so this is nearly red colour light
Answer:
<em>Magnitude of the Frictional force is 200 N</em>
Explanation:
The frictional force is the force that tries to oppose relative motion between two surfaces that are contacting. The coefficient of static friction is the coefficient of friction of a body that is not moving.
Newton's third law of motion states that action and reaction forces are equal and opposite. So the frictional force felt on the filing cabinet will be equal to the applied force pulling the cabinet.
Frictional force = Force applied
Force applied = 200 N
Therefore, the magnitude of the friction force on the filing cabinet is 200 N