Answer:
The store energy in the inductor is 0.088 J
Explanation:
Given that,
Inductor = 100 mH
Resistance = 6.0 Ω
Voltage = 12 V
Internal resistance = 3.0 Ω
We need to calculate the current
Using ohm's law


Put the value into the formula


We need to calculate the store energy in the inductor



Hence, The store energy in the inductor is 0.088 J
Question:
A point charge of -2.14uC is located in the center of a spherical cavity of radius 6.55cm inside an insulating spherical charged solid. The charge density in the solid is 7.35×10−4 C/m^3.
a) Calculate the magnitude of the electric field inside the solid at a distance of 9.50cm from the center of the cavity.
Express your answer using two significant figures.
Answer:
The magnitude of the electric field inside the solid at a distance of 9.50cm from the center of the cavity 
Explanation:
A point charge ,q =
is located in the center of a spherical cavity of radius ,
m inside an insulating spherical charged solid.
The charge density in the solid , d = 
Distance from the center of the cavity,R =
Volume of shell of charge= V =![(\frac{4\pi}{3})[ R^3 - r^3 ]](https://tex.z-dn.net/?f=%28%5Cfrac%7B4%5Cpi%7D%7B3%7D%29%5B%20R%5E3%20-%20r%5E3%20%5D)
Charge on the shell ,Q = 
![Q =(\frac{4\pi}{3})[ R^3 - r^3 ] \times d](https://tex.z-dn.net/?f=Q%20%3D%28%5Cfrac%7B4%5Cpi%7D%7B3%7D%29%5B%20R%5E3%20-%20r%5E3%20%5D%20%5Ctimes%20d)
![Q = 4.1888\times 10^{-4} [5.76364 ] \times 7.35 \times 10^{-4}](https://tex.z-dn.net/?f=Q%20%3D%204.1888%5Ctimes%2010%5E%7B-4%7D%20%5B5.76364%20%5D%20%5Ctimes%207.35%20%5Ctimes%2010%5E%7B-4%7D)


Electric field at
m due to shell
E1 = 

Electric field at
due to 'q' at center 
E2 =

The magnitude of the electric field inside the solid at a distance of 9.50cm from the center of the cavity
= E2- E1
![=[ 2.134 - 1.769 ]\times 10^6](https://tex.z-dn.net/?f=%3D%5B%20%202.134%20%20-%201.769%20%5D%5Ctimes%2010%5E6)

Answer:
f(x)=a(x - h)2 + k
Much like a linear function, k works like b in the slope-intercept formula. Like where add or subtract b would determine where the line crosses, in the linear, k determines the vertex of the parabola. If you're going to go up 2, then you need to add 2.
The h determines the movement horizontally. what you put in h determines if it moves left or right. To adjust this, you need to find the number to make the parentheses equal 0 when x equals -2 (because moving the vertex point to the left means subtraction/negatives):
x - h = 0
-2 - h = 0
-h = 2
h = -2
So the function ends up looking like:
f(x)=a(x - (-2))2 + 2
Subtracting a negative cancels the signs out to make a positive:
f(x)=a(x + 2)2 + 2Explanation:
Answer:
Explanation:
Its definitely an Attractive force since the two charges are Unlike.
From Coulombs Law
F=kq1q2/R²
Given
K=9x10^9
R=1m
q1=2C
q2=-1C
F=(9x10^9 x 2 x -1)/1²
F= - 1.8x10^10N. (Attractive).