Answer:
84.8%
Explanation:
Step 1: Given data
Bob measured out 1.60 g of Na. He forms NaCl according to the following equation.
Na + 1/2 Cl₂ ⇒ NaCl
According to this equation, he calculates that 1.60 g of sodium should produce 4.07 g of NaCl, which is the theoretical yield. However, he carries out the experiment and only makes 3.45 g of NaCl, which is the real yield.
Step 2: Calculate the percent yield.
We will use the following expression.
%yield = real yield / theoretical yield × 100%
%yield = 3.45 g / 4.07 g × 100% = 84.8%
Answer:
Molality = 8.57 m
Explanation:
Given data:
Molarity of solution = 5.73 M
density = 0.9327 g/mL
Molality of solution = ?
Solution:
Molality = moles of solute / kg of solvent.
Kg of solvent:
Mass of 1 L solution = density× volume
Mass of 1 L solution = 0.9327 g/mL × 1000 mL
Mass of 1 L solution = 932.7 g
Mass of solute:
Mass of 1 L = number of moles × molar mass
Mass = 5.73 mol × 46.068 g/mol
Mass = 263.97 g
Mass of solvent:
Mass of solvent = mass of solution - mass of solute
Mass of solvent = 932.7 g - 263.97 g
Mass of solvent = 668.73 g
In Kg = 668.73 /1000 = 0.6687 Kg
Molality:
Molality = number of moles of solute / mass of solvent in Kg
Molality = 5.73 mol / 0.6687 Kg
Molality = 8.57 m
Answer:
Classification will be Potassium, Bromine, and Argon
Explanation:
- Potassium is more likely to lose electrons and form positive ion
- Bromine actually gain electrons and forms negative ion
- Argon does not lose or gain electrons
Answer:
It is because water molecules in the air condensed on to the container of the drink.
Explanation:
The way this works is the water molecules outside are hot and in the gas state, so when they come into contact with the cold side of the container they lose energy due to heat transfer between the molecules and the container, becoming a liquid on the side of the drink.