The second option is the correct one. m/s^2
Momentum = mass x velocity
So both mass and velocity affect an object's momentum.
-- We're going to be talking about the satellite's speed.
"Velocity" would include its direction at any instant, and
in a circular orbit, that's constantly changing.
-- The mass of the satellite makes no difference.
Since the planet's radius is 3.95 x 10⁵m and the satellite is
orbiting 4.2 x 10⁶m above the surface, the radius of the
orbital path itself is
(3.95 x 10⁵m) + (4.2 x 10⁶m)
= (3.95 x 10⁵m) + (42 x 10⁵m)
= 45.95 x 10⁵ m
The circumference of the orbit is (2 π R) = 91.9 π x 10⁵ m.
The bird completes a revolution every 2.0 hours,
so its speed in orbit is
(91.9 π x 10⁵ m) / 2 hr
= 45.95 π x 10⁵ m/hr x (1 hr / 3,600 sec)
= 0.04 x 10⁵ m/sec
= 4 x 10³ m/sec
(4 kilometers per second)
Answer:The change in pressure can affect the pressure on the fluid through the radius and diameter of the pipe.
r^² x Pressure (pa).
Therefore the narrower the other part of the pile, the greater the pressure on the fluid at such part, the wider in other part the lesser the pressure on the fluid at this part.
Explanation:
Either A or D. If I were answering I'd go with my git answer and say A