Answer:
1.23 m/s²
Explanation:
Given:
v₀ = 0 m/s
v = 11.1 m/s
t = 9 s
Find: a
Equation:
v = at + v₀
Plug in:
11.1 m/s = a (9 s) + 0 m/s
a = 1.23 m/s²
The runner's acceleration is 1.23 m/s².
Answer:
part of energy is wasted in heat because of resistance in the filament (and that's how it glows)
Answer:
3) C
4 D
5) C
Explanation:
3) given that
Initial distance of the screen = 100cm
Initial area = 150 cm^2
Final distance = 200 cm
The intensity of light is inversely proportional to the square of the distance. That is
Intensity of light I = 1/d2
And also I = P/A
1/d^2 = P/A
P = A/d^2
P1 = P2
150/100 = A/200
1.5 = A/200
A = 1.5 × 200
A = 300 cm^2
4.) Light is projected onto a screen 75.0 cm from a light source. The light intensity = 4436 lux
If the screen is moved from 75.0 cm to 150. cm, the light sensor reading will be
Using inverse square law
I = 1/d^2
I×d^2 = constant. Therefore,
4436 × 75^2 = I × 150^2
I = 24952500/22500
I = 1109 lux
5.) We can express the relationship between luminosity, brightness, and distance with a simple formula.
As we tilt the serene the area of light decreases and makes the light more concentrated.