1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
erica [24]
3 years ago
12

At a pressure of one atmosphere oxygen boils at −182.9°C and freezes at −218.3°C. Consider a temperature scale where the boiling

point of oxygen is 100.0°O and the freezing point is 0°O. Determine the temperature on the Oxygen scale that corresponds to the absolute zero point on the Kelvin scale.
Physics
1 answer:
Gelneren [198K]3 years ago
5 0

Answer: -254.51°O

Explanation:

Ok, in our scale, we have:

-182.9°C corresponds to 100° O

-218.3°C corresponds to 0°

Then we can find the slope of this relation as:

S = (100° - 0°)/(-182.9°C - (-218.3°C)) = 2.82°O/°C

So we can have the linear relationship between the scales is:

Y = (2.82°O/°C)*X + B

in this relation, X is the temperature in Celcius and Y is the temperature in the new scale.

And we know that when X = -182.9°C, we must have Y = 0°O

then:

0 = (2.82°O/°C)*(-182.9°C) + B

B = ( 2.82°O/°C*189.9°C) = 515.778°O.

now, we want to find the 0 K in this scale, and we know that:

0 K = -273.15°C

So we can use X =  -273.15°C in our previous equation and get:

Y = (2.82°O/°C)*(-273.15°C) + 515.778°O = -254.51°O

You might be interested in
Which of the following gases are the heaviest? <br> O2, CH4, CO2, Cl2
kvasek [131]

the answer is

CI2 because its 70.


5 0
3 years ago
The specific heat of a certain type of metal is 0.128 J/(g⋅∘C).0.128 J/(g⋅∘C). What is the final temperature if 305 J305 J of he
Makovka662 [10]

Answer:

45.3°C

Explanation:

Heat gained = mass × specific heat × increase in temperature

q = mC (T − T₀)

Given C = 0.128 J/g/°C, m = 94.0 g, q = 305 J, and T₀ = 20.0°C:

305 J = (94.0 g) (0.128 J/g/°C) (T − 20.0°C)

T = 45.3°C

6 0
3 years ago
A conductor carrying a current I = 16.5 A is directed along the positive x axis and perpendicular to a uniform magnetic field. A
Jet001 [13]

To solve this problem we will apply the concepts related to the Magnetic Force, this is given by the product between the current, the body length, the magnetic field and the angle between the force and the magnetic field, mathematically that is,

F = ILBsin \theta

Here,

I = Current

L = Length

B = Magnetic Field

\theta = Angle between Force and Magnetic Field

But \theta = 90\°

F = ILB

Rearranging to find the Magnetic Field,

B = \frac{F}{IL}

Here the force per unit length,

B = \frac{1}{I}\frac{F}{L}

Replacing with our values,

B = \frac{0.130N/m}{16.5}

B = 0.0078T

Therefore the magnitude of the magnetic field in the region through which the current passes is 0.0078T

6 0
3 years ago
A 1.60 m tall person lifts a 2.10-kg book from the ground so it is 2.20 m above the ground. What is the potential energy of the
Viefleur [7K]

Answer:

Explanation:

Given

mass of book(m)=2.1 kg

height up to which book is lifted is (h)2.2 m

height of person (h_0)1.6 m

Potential energy of book relative to ground=mgh

PE=2.1\times 9.8\times 2.2=45.276 J

(b)PE w.r.t to person head =mg(h-h0)

=2.1\times 9.8\times (2.2-1.6)=12.348 J

work done by person in lifting box 2.2 m w.r.t floor

Word done =Potential Energy of box relative to floor=45.2 J

6 0
3 years ago
Dylan has two cubes of iron. The larger cube has twice the mass of the smaller cube. He measures the smaller cube. Its mass is 2
liubo4ka [24]

Answer:

The volume of the larger cube is 5.08 g/cm³.

Explanation:

Given that,

Mass of smaller cube = 20 g

Density of smaller cube \rho= 7.87 g/cm^2

Dylan has two cubes of iron.

The larger cube has twice the mass of the smaller cube.

M_{l}=2m_{s}

Density is same for both cubes because both cubes are same material.

The density is equal to the mass divided by the volume.

\rho=\dfrac{m}{V}

V=\dfrac{m}{\rho}

Where, V = volume

m = mass

\rho=density

We need to calculate the volume of smaller mass

The volume of smaller mass

V_{s}=\dfrac{m_{s}}{\rho_{s}}

V_{s}=\dfrac{20}{7.87}

V_{s}=2.54\ cm^3

Now, We need to calculate the volume of large cube

V_{l}=\dfrac{m_{l}}{\rho_{l}}

V_{l}=\dfrac{2\times20}{7.87}

V_{l}=5.08\ g/cm^3

Hence, The volume of the larger cube is 5.08 g/cm³.

8 0
3 years ago
Other questions:
  • A pile driver lifts a 450 kg weight and then lets it fall onto the end of a steel pipe that needs to be driven into the ground.
    12·2 answers
  • Explain how to measure volume using a graduated cylinder
    11·1 answer
  • Why is the sky blue ?
    15·2 answers
  • Which of the following statements is TRUE? Which of the following statements is TRUE? A) The smaller a gas particle, the slower
    7·1 answer
  • A temperature of 273 K is the temperature at which water : A. boils. B. freezes. C. lacks any moving molecules. D. evaporates.
    8·1 answer
  • An atomic nucleus with a rest mass energy of 7134 MeV is accelerated to 99.217% the speed of light relative to the lab frame. Wh
    6·1 answer
  • A box is pushed horizontally with constant speed across a rough horizontal surface.
    8·1 answer
  • Chris threw a basketball a distance of 27.5 m to score and win his
    13·1 answer
  • Ang kongreso ang gumagawa ng pambansang Batas. Ito ay binubuo ng _____ kapulungan​.
    5·1 answer
  • explain how potential and kinetic energy are at play when we talk about Newton's second law of motion
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!