1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
photoshop1234 [79]
3 years ago
7

An equilibrium mixture of 3 kmol of CO, 2.5 kmol of O2, and 8 kmol of N2 is heated to 2600 K at a pressure of 5 atm. Determine t

he equilibrium composition of the mixture for these conditions.
Engineering
1 answer:
garri49 [273]3 years ago
7 0

Answer:

x_{CO}=0.0203\\x_{O_2}=0.0926\\x_{CO_2}=0.227\\x_{N_2}=0.660

Explanation:

Hello,

In this case, we consider the reaction:

CO(g)+\frac{1}{2} O_2(g)\rightleftharpoons CO_2

For which the law of mass action is expressed as:

Kp=\frac{n_{CO_2}}{n_{CO}*n_{O_2}^{1/2}} (\frac{P}{n_{Tot}} )^{1-1-1/2}

Whereas the exponents are referred to the stoichiometric coefficients in the chemical reaction. Moreover, in table A-28 (Cengel's thermodynamics) the natural logarithm of the undergoing reaction at 2600 K is 2.801, thus:

K=exp(2.801)=16.46

In such a way, in terms of the change x the equilibrium goes:

16.46=\frac{x}{(3kmol-x)*(2.5kmol-0.5x)^{0.5}} (\frac{5}{13.5kmol-0.5x} )^{-0.5}

Hence, solving for x:

x=2.754kmol

Thus, the moles at equilibrium:

n_{CO}=3-2.754=0.246kmol\\n_{O_2}=2.5-0.5(2.754)=1.123kmol\\n_{CO_2}=x=2.754kmol\\n_{N_2}=8kmol

Finally the compositions:

x_{CO}=\frac{0.246}{0.246+1.123+2.754+8} =0.0203\\\\x_{O_2}=\frac{1.123}{0.246+1.123+2.754+8} =0.0926\\\\x_{CO_2}=\frac{2.754}{0.246+1.123+2.754+8} =0.227\\\\x_{N_2}=\frac{8}{0.246+1.123+2.754+8} =0.660

Best regards.

You might be interested in
Steam flows steadily through an adiabatic turbine. The inlet conditions of the steam are 10 MPa, 450°C, and 80 m/s, and the exit
8090 [49]

Answer:

a) The change in Kinetic energy, KE = -1.95 kJ

b) Power output, W = 10221.72 kW

c) Turbine inlet area, A_1 = 0.0044 m^2

Explanation:

a) Change in Kinetic Energy

For an adiabatic steady state flow of steam:

KE = \frac{V_2^2 - V_1^2}{2} \\.........(1)

Where Inlet velocity,  V₁ = 80 m/s

Outlet velocity, V₂ = 50 m/s

Substitute these values into equation (1)

KE = \frac{50^2 - 80^2}{2} \\

KE = -1950 m²/s²

To convert this to kJ/kg, divide by 1000

KE = -1950/1000

KE = -1.95 kJ/kg

b) The power output, w

The equation below is used to represent a  steady state flow.

q - w = h_2 - h_1 + KE + g(z_2 - z_1)

For an adiabatic process, the rate of heat transfer, q = 0

z₂ = z₁

The equation thus reduces to :

w = h₁ - h₂ - KE...........(2)

Where Power output, W = \dot{m}w..........(3)

Mass flow rate, \dot{m} = 12 kg/s

To get the specific enthalpy at the inlet, h₁

At P₁ = 10 MPa, T₁ = 450°C,

h₁ = 3242.4 kJ/kg,

Specific volume, v₁ = 0.029782 m³/kg

At P₂ = 10 kPa, h_f = 191.81 kJ/kg, h_{fg} = 2392.1 kJ/kg, x₂ = 0.92

specific enthalpy at the outlet, h₂ = h_1 + x_2 h_{fg}

h₂ = 3242.4 + 0.92(2392.1)

h₂ = 2392.54 kJ/kg

Substitute these values into equation (2)

w = 3242.4 - 2392.54 - (-1.95)

w = 851.81 kJ/kg

To get the power output, put the value of w into equation (3)

W = 12 * 851.81

W = 10221.72 kW

c) The turbine inlet area

A_1V_1 = \dot{m}v_1\\\\A_1 * 80 = 12 * 0.029782\\\\80A_1 = 0.357\\\\A_1 = 0.357/80\\\\A_1 = 0.0044 m^2

3 0
3 years ago
What is the maximal coefficient of performance of a refrigerator which cools down 10 kg of water (and then ice) to -6C. Upper he
inysia [295]

Given:

Temperature of water, T_{1} = -6^{\circ}C =273 +(-6) =267 K

Temperature surrounding refrigerator, T_{2} = 21^{\circ}C =273 + 21 =294 K

Specific heat given for water, C_{w} = 4.19 KJ/kg/K

Specific heat given for ice, C_{ice} = 2.1 KJ/kg/K

Latent heat of fusion,  L_{fusion} = 335KJ/kg

Solution:

Coefficient of Performance (COP) for refrigerator is given by:

Max COP_{refrigerator} = \frac{T_{2}}{T_{2} - T_{1}}

= \frac{267}{294 - 267} = 9.89

Coefficient of Performance (COP) for heat pump is given by:

Max COP_{heat pump} = \frac{T_{1}}{T_{2} - T_{1}}\frac{294}{294 - 267} = 10.89

6 0
3 years ago
A four-cylinder, four-stroke internal combustion engine has a bore of 3.7 in. and a stroke of 3.4 in. The clearance volume is 16
abruzzese [7]

Answer:

1) The three possible assumptions are

a) All processes are reversible internally

b) Air, which is the working fluid circulates continuously in a closed loop

cycle

c) The process of combustion is depicted as a heat addition process

2) The diagrams are attached

5) The net work per cycle is 845.88 kJ/kg

The power developed in horsepower ≈ 45374 hP

Explanation:

1) The three possible assumptions are

a) All processes are reversible internally

b) Air, which is the working fluid circulates continuously in a closed loop

cycle

c) The process of combustion is depicted as a heat addition process

2) The diagrams are attached

5) The dimension of the cylinder bore diameter = 3.7 in. = 0.09398 m

Stroke length = 3.4 in. = 0.08636 m.

The volume of the cylinder v₁= 0.08636 ×(0.09398²)/4 = 5.99×10⁻⁴ m³

The clearance volume = 16% of cylinder volume = 0.16×5.99×10⁻⁴ m³

The clearance volume, v₂  = 9.59 × 10⁻⁵ m³

p₁ = 14.5 lbf/in.² = 99973.981 Pa

T₁ = 60 F = 288.706 K

\dfrac{T_{2}}{T_{1}} = \left (\dfrac{v_{1}}{v_{2}}  \right )^{K-1}

Otto cycle T-S diagram

T₂ = 288.706*6.25^{0.393} = 592.984 K

The maximum temperature = T₃ = 5200 R = 2888.89 K

\dfrac{T_{3}}{T_{4}} = \left (\dfrac{v_{4}}{v_{3}}  \right )^{K-1}

T₄ = 2888.89 / 6.25^{0.393} = 1406.5 K

Work done, W = c_v×(T₃ - T₂) - c_v×(T₄ - T₁)

0.718×(2888.89  - 592.984) - 0.718×(1406.5 - 288.706) = 845.88 kJ/kg

The power developed in an Otto cycle = W×Cycle per second

= 845.88 × 2400 / 60  = 33,835.377 kW = 45373.99 ≈ 45374 hP.

8 0
3 years ago
A tank with some water in it begins to drain. The function v ( t ) = 46 − 3.5 t determines the volume of the water in the tank (
olchik [2.2K]

Answer with Explanation:

Part a)

The volume of water in the tank as a function of time is plotted in the below attached figure.

The vertical intercept of the graph is 46.

Part b)

The vertical intercept represents the volume of water that is initially present in the tank before draining begins.

Part c)

To find the time required to completely drain the tank we calculate the volume of the water in the tank to zero.

0=46-3.5t\\\\3.5=46\\\\\therefore t=\frac{46}{3.5}=13.143minutes

Part d)

The horizontal intercept represents the time it takes to empty the tank which as calculated above is 13.143 minutes.

7 0
3 years ago
Write a system of equations to describe the situation below, solve using any method, and fill in the blanks.
Ann [662]

The number of tubs that each of them sold is; 24 tubs each

The number of days it will take for both of them to sell same amount of tubs is; 4 days

Number of cookies that Nicole had already sold = 4 tubs

Number of cookies sold by Josie before counting = 0 cookies

Nicole now sells 5 tubs per day and

Josie now sells 6 tubs per day.

Let the number of days it will take for them to have sold the same amount of cookies be d.

Thus;

5d + 4 = 6d + 0

6d - 5d = 4

d = 4 days

Thus, total number of cookies for both are;

Total for Nicole = 4 + 5(4) = 24 cookies

Total for Josie = 6(4) = 24 cookies

Read more about proportion at; brainly.com/question/870035

6 0
3 years ago
Other questions:
  • A corroded metal gusset plate was found on a bridge. It was estimated that the original area of the plate was 750 cm2 and that a
    11·1 answer
  • A thick oak wall (rho = 545 kg/m3 , Cp = 2385 J/kgK, and k = 0.17 W/mK) initially at 25°C is suddenly exposed to combustion prod
    11·1 answer
  • Water at 310 K and a flow rate of 4 kg/s enters an alumina tube (k=177Wm K1) with an inner diameter of 0.20 m and a wall thickne
    13·1 answer
  • PLEASE HELP!!! ILL GIVE BRANLIEST *EXTRA POINTS* dont skip :((
    11·2 answers
  • Shear modulus is analogous to what material property that is determined in tensile testing? (a)- Percent reduction of area (b) Y
    11·1 answer
  • What friction rate should be used to size a duct for a static pressure drop of 0.1 in wc if the duct has a total equivalent leng
    9·1 answer
  • This app, I'm done, bye... I can't, bye
    11·1 answer
  • A refrigerator operating on the Carnot cycle is used to make ice. Water freezing at 32oF is the cold reservoir. Heat is rejected
    11·1 answer
  • I really need help with my last topic,Hazard communication,if anyone can help me as soon as possible,that could be my Christmas
    12·1 answer
  • Why is personal development necessary based activity success life and career​
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!