Answer:
Heat flux of CO₂ in cgs
= 170.86 x 10⁻⁹ mol / cm²s
SI units
170.86 x 10⁻⁸ kmol/m²s
Explanation:
Answer:
true
Explanation:
Creep is known as the time dependent deformation of structure due to constant load acting on the body.
Creep is generally seen at high temperature.
Due to creep the length of the structure increases which is not fit for serviceability purpose.
When time passes structure gain strength as the structure strength increases with time so creep tends to decrease.
When we talk about Creep rate for new structure the creep will be more than the old structure i.e. the creep rate decreases with time.
Answer:
the overall heat transfer coefficient of this heat exchanger is 1855.8923 W/m²°C
Explanation:
Given:
d₁ = diameter of the tube = 1 cm = 0.01 m
d₂ = diameter of the shell = 2.5 cm = 0.025 m
Refrigerant-134a
20°C is the temperature of water
h₁ = convection heat transfer coefficient = 4100 W/m² K
Water flows at a rate of 0.3 kg/s
Question: Determine the overall heat transfer coefficient of this heat exchanger, Q = ?
First at all, you need to get the properties of water at 20°C in tables:
k = 0.598 W/m°C
v = 1.004x10⁻⁶m²/s
Pr = 7.01
ρ = 998 kg/m³
Now, you need to calculate the velocity of the water that flows through the shell:
It is necessary to get the Reynold's number:
Like the Reynold's number is greater than 10000, the regime is turbulent. Now, the Nusselt's number:
The overall heat transfer coefficient:
Here
Substituting values:
Its 0.001
0.01 x100 = 1mm
0.001x100=0.1mm
0.1=10mm
1m