The early precambrian atmosphere consisted primarily of nitrogen and carbon dioxide with almost no oxygen.
<span>Today, the atmosphere contains about 20% oxygen, less carbon dioxide and similar amounts of nitrogen. </span>
<span>Photosynthetic green-leaf plants and trees are largely responsible for the change, converting carbon dioxide to oxygen.</span>
Answer: acid dissociation constant Ka= 2.00×10^-7
Explanation:
For the reaction
HA + H20. ----> H3O+ A-
Initially: C. 0. 0
After : C-Cx. Cx. Cx
Ka= [H3O+][A-]/[HA]
Ka= Cx × Cx/C-Cx
Ka= C²X²/C(1-x)
Ka= Cx²/1-x
Where x is degree of dissociation = 0.1% = 0.001 and c is the concentration =0.2
Ka= 0.2(0.001²)/(1-0.001)
Ka= 2.00×10^-7
Therefore the dissociation constant is
2.00×10^-7
Answer:
The answer is (C) There are more solute molecules than water molecules.
Explanation:
A saturated solution is one in which no more solute can be dissolved or disintegrated into the solvent. When or if the ozone stops being dissolved in the water, it implies that the water has already taken on more ozone molecules than it can contain, meaning there are more solute molecules (ozone molecules) than there are solvent molecules (water molecules).
Physical. you didn't burn it or create a chemical reaction
Answer:
2,3,6,1
2,3,6,1
Explanation:
The unbalanced reaction expression is given as:
AlBr₃ + K₂SO₄ → KBr + Al₂(SO₄)₃
We need to balanced this reaction equation. Our approach is a mathematical method where we assign variable a,b,c and d as the coefficients.
aAlBr₃ + bK₂SO₄ → cKBr + dAl₂(SO₄)₃
Conserving Al; a = 2d
Br: 3a = c
K: 2b = c
S: b = 3d
O: 4b = 12d
Let a = 1, c = 3, d =
b =
Multiply through by 2 to give;
a = 2, b = 3, c = 6 and d = 1
2AlBr₃ + 3K₂SO₄ → 6KBr + Al₂(SO₄)₃