Answer: true
Explanation: I got the question and guessed true and it was right
Hi there!
Initially, we have gravitational potential energy and kinetic energy. If we set the zero-line at H2 (12.0m), then the ball at the second building only has kinetic energy.
We also know there was work done on the ball by air resistance that decreased the ball's total energy.
Let's do a summation using the equations:

Our initial energy consists of both kinetic and potential energy (relative to the final height of the ball)

Our final energy, since we set the zero-line to be at H2, is just kinetic energy.

And:

The work done by air resistance is equal to the difference between the initial energy and the final energy of the soccer ball.
Therefore:

Solving for the work done by air resistance:


The answer is Basal Metabolic Rate. It is the total
amount of energy expressed in calories that an individual needs to keep the
body working at rest. Some of those progressions are blood circulation, breathing,
cell growth, controlling body temperature, nerve and brain function, and tightening
of muscles.
<span>Basically, the variable n is equal to the amount of P out of the system divided by the about of P into the system
</span>