The heat released by the water when it cools down by a temperature difference AT
is Q = mC,AT
where
m=432 g is the mass of the water
C, = 4.18J/gºC
is the specific heat capacity of water
AT = 71°C -18°C = 530
is the decrease of temperature of the water
Plugging the numbers into the equation, we find
Q = (4329)(4.18J/9°C)(53°C) = 9.57. 104J
and this is the amount of heat released by the water.
False. An increase in temperature is an exothermic reaction. However, when a temperature decreases this is known as an endothermic reactionz
Answer:
Q = 0.50
No
Left
Explanation:
At a generic reversible equation
aA + bB ⇄ cC + dD
The reaction coefficient (Q) is the ratio of the substances concentrations:
![Q = \frac{[C]^c*[D]^d}{[A]^a*[B]^b}](https://tex.z-dn.net/?f=Q%20%3D%20%5Cfrac%7B%5BC%5D%5Ec%2A%5BD%5D%5Ed%7D%7B%5BA%5D%5Ea%2A%5BB%5D%5Eb%7D)
Solids and liquid water are not considered in this calculus.
When the reaction achieves equilibrium (concentrations are constant), the Q value is named as Kc, which is the equilibrium constant of the reaction. If Q > Kc, it indicates that the concentration of the products is higher, so, the reaction must progress to the left and form more reactants; if Q < Kc, than the concentrations of the reactants, are higher, so, the reaction progress to the right.
In this case:
Q = ![\frac{[NO_2]^2}{[N_2O_4]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BNO_2%5D%5E2%7D%7B%5BN_2O_4%5D%7D)

Q = 0.50
So, Q > Kc, the reaction is not at equilibrium and it progresses to the left.
Answer:
A communicable disease
Explanation:
Diseases that can be transferred are known as communicable diseases.