Answer:
b. less than w.
Explanation:
In this question, the application of length contraction is what helps us come to our conclusion. When an object moves very fast (relative to the observer), the length of the object seems to be smaller than it actually is (again, for the observer).
This is supported by the length contraction equation below:
L = 
Here, L is the observed length
is the original length of the object
v is the relative speed between the object and the observer
and c is the speed of light
Using this equation, we can see that as the speed between the object and the observer is increased to be close to that of light, the square root in the equation gives us values less than 1.0
This effectively decreases the length that is observed.
Answer:
A.3.13x10^14 electrons
B.330A/m²
C.9.11x10^5N/C
D. 0.23W
.pls see attached file for explanations
Answer:

Explanation:
Given data:
Mass of the paper clip, 
Kinetic energy, 
Let the velocity of the paper clip when it is thrown be <em>v</em>.
Thus,



(rounding to nearest tenth)
Hooke's Law
F = k. Δx
Δx = 30 cm = 0.3 m
200 = k . 0.3

the spring stretch for 100 N:
