Answer:
The value is 
The direction is into the surface
Explanation:
From the question we are told that
The mass density is 
The coefficient of kinetic friction is
The current the wire carries is 
Generally the magnetic force acting on the wire is mathematically represented as

Here
is the frictional force which is mathematically represented as

While
is the magnetic force which is mathematically represented as

Here
is the angle between the direction of the force and that of the current
So

So

=> ![B = \mu_k * \frac{m}{L} * [\frac{g}{I} ]](https://tex.z-dn.net/?f=B%20%20%3D%20%20%5Cmu_k%20%2A%20%20%5Cfrac%7Bm%7D%7BL%7D%20%2A%20%5B%5Cfrac%7Bg%7D%7BI%7D%20%5D)
=> ![B = 0.25 * 0.117 * [\frac{9.8}{1.24} ]](https://tex.z-dn.net/?f=B%20%20%3D%20%200.25%20%2A%20%200.117%20%20%2A%20%5B%5Cfrac%7B9.8%7D%7B1.24%7D%20%5D)
=> 
Apply the right hand curling rule , the thumb pointing towards that direction of the current we see that the direction of the magnetic field is into the surface as shown on the first uploaded image
Answer:
Some signs of a chemical change are a change in color and the formation of bubbles. The five conditions of chemical change: color chage, formation of a precipitate, formation of a gas, odor change, temperature change.
Explanation:
Answer:

Explanation:
The electric force between two charged objects is given by:

where:
k is the Coulomb's constant
q1 and q2 are the charges of the two objects
r is their separation
In this problem:
q1 = 2.0 C
q2 = 1.0 C
r = 2 m
So, the electric force is

Answer:
a) always. b) electric field lines are defined by the path positive test charges travel.
Explanation:
By convention, field lines always follow the direction that it would take a positive test charge (small enough so it can´t disrupt the field created by a charge distribution), under the influence of an electric field, at the same point where the test charge is located.
So any positive charge, subject to an electric field influence, moves along the field line that passes through its current position, in the same way that a positive test charge would.
We could say also that the electric force on a positively charged particle is in the same direction as the electric field that produces that force (due to some charge distribution) , which is true, but it doesn´t explain why.
Answer:
since small stone has less mass so the gravitational pull of the earth is lesser in case of this but this is not for the bigger stone as the gravitational pull of the earth is greater...
PLEASE MARK BRAINLIEST!!!!!