The answer to this question is <span>13,537</span>
Answer:
wavelength decreases and frequency increase
Explanation:
the higher the wavelength the smaller the frequency , the smaller the wavelength the higher the frequency
Answer:
a) v = 1.075*10^7 m/s
b) FB = 7.57*10^-12 N
c) r = 10.1 cm
Explanation:
(a) To find the speed of the alpha particle you use the following formula for the kinetic energy:
(1)
q: charge of the particle = 2e = 2(1.6*10^-19 C) = 3.2*10^-19 C
V: potential difference = 1.2*10^6 V
You replace the values of the parameters in the equation (1):

The kinetic energy of the particle is also:
(2)
m: mass of the particle = 6.64*10^⁻27 kg
You solve the last equation for v:

the sped of the alpha particle is 1.075*10^6 m/s
b) The magnetic force on the particle is given by:

B: magnitude of the magnetic field = 2.2 T
The direction of the motion of the particle is perpendicular to the direction of the magnetic field. Then sinθ = 1

the force exerted by the magnetic field on the particle is 7.57*10^-12 N
c) The particle describes a circumference with a radius given by:

the radius of the trajectory of the electron is 10.1 cm
Answer:
20 cm
Explanation:
Given that a ball is released from a vertical height of 20 cm. It rolls down a "perfectly frictionless" ramp and up a similar ramp. What vertical height on the second ramp will the ball reach before it starts to roll back down?
Since it is perfectly frictionless, the Kinetic energy in which the ball is rolling will be equal to the potential energy at the edge of the ramp.
Therefore, the ball will reach 20 cm before it starts to roll back down.
Answer:
33,458.71 turns
Explanation:
Given: L = 37 cm = 0.37 m, B= 0.50 T, I = 4.4 A, n= number of turn per meter
μ₀ = Permeability of free space = 4 π × 10 ⁻⁷
Solution:
We have B = μ₀ × n × I
⇒ n = B/ (μ₀ × I)
n = 0.50 T / ( 4 π × 10 ⁻⁷ × 4.4 A)
n = 90,428.94 turn/m
No. of turn through 0.37 m long solenoid = 90,428.94 turn/m × 0.37
= 33,458.71 turns