Answer:
 C2H6 up the road to be with its own in 
 
        
             
        
        
        
Answer:
For every action, there is an equal and opposite reaction.
Explanation:
Physics helps alot lol
 
        
             
        
        
        
John weighs 200 pounds.
In order to lift himself up to a higher place, he has to exert force of 200 lbs.
The stairs to the balcony are 20-ft high.
In order to lift himself to the balcony, John has to do
(20 ft) x (200 pounds)  =  4,000 foot-pounds of work.
If he does it in 6.2 seconds, his RATE of doing work is
(4,000 foot-pounds) / (6.2 seconds)  =  645.2 foot-pounds per second.
The rate of doing work is called "power".
(If we were working in the metric system (with SI units),
the force would be in "newtons", the distance would be in "meters",
1 newton-meter of work would be 1 "joule" of work, and 
1 joule of work per second would be 1 "watt".
Too bad we're not working with metric units.)
So back to our problem.
John has to do 4,000 foot-pounds of work to lift himself up to the balcony,
and he's able to do it at the rate of 645.2 foot-pounds per second.
Well, 550 foot-pounds per second is called 1 "horsepower".
So as John runs up the steps to the balcony, he's doing the work
at the rate of
           (645.2 foot-pounds/second) / (550 ft-lbs/sec per HP)
=  1.173 Horsepower.  GO JOHN !
(I'll betcha he needs a shower after he does THAT 3 times.)
_______________________________________________
Oh my gosh !  Look at #26 !  There are the metric units I was talking about.
Do you need #26 ?
I'll give you the answers, but I won't go through the explanation,
because I'm doing all this for only 5 points.
a).  5
b).  750 Joules
c).  800 Joules
d).  93.75%
You're welcome.
And #27 is 0.667 m/s .
        
             
        
        
        
Answer:
The fundamental wavelength of the vibrating string is 1.7 m.
Explanation:
We have,
Velocity of wave on a guitar string is 344 m/s
Length of the guitar string is 85 cm or 0.85 m
It is required to find the fundamental wavelength of the vibrating string. The fundamental frequency on the string is given by :

Now fundamental wavelength is :

So, the fundamental wavelength of the vibrating string is 1.7 m.