Answer:
114.86%
Explanation:
In both cases, there is a vertical force equal to the sprinter's weight:
Fy = mg
When running in a circle, there is an additional centripetal force:
Fx = mv²/r
The net force is found with Pythagorean theorem:
F² = Fx² + Fy²
F² = (mv²/r)² + (mg)²
F² = m² ((v²/r)² + g²)
F = m √((v²/r)² + g²)
Compared to just the vertical force:
F / Fy
m √((v²/r)² + g²) / mg
√((v²/r)² + g²) / g
Given v = 12 m/s, r = 26 m, and g = 9.8 m/s²:
√((12²/26)² + 9.8²) / 9.8
1.1486
The force is about 114.86% greater (round as needed).
We have: Q = m.s.Δt
m = Q / s.Δt
Here, Q = 19.4 J
s = 6.28 J/g C
Δt = 22.9
Substitute their values into the expression:
m = 19.4 / 6.28×22.9
m = 19.4 / 143.81
m = 0.135 g
In short, Your Answer would be Option A
Hope this helps!
The atoms/ particles that are in the gas have gotten energy from the heat, because of that, they zoom around the container, putting pressure on it :) hope it helps :)
Answer:
Positive.
Explanation:
As a consequence of the photoelectric effect, electrons that will get hit by sufficiently energetic photons will abandon the metal surfaces exposed to bright sunlight. This decreases the negative charge of the surface, thus causing it to develop a positive net charge.