Answer: D. places where the magnetic field strength is either greater or less than the expected strength.
Explanation:
Magnetic anomaly refers to the change in the magnitude of the magnetic field of the Eatth with respect to the location's expected value.
Magnetic anomalies are places where the magnetic field strength is either greater or less than the expected strength. Therefore, the correct option is D.
Answer:
<u>The magnitude of the friction force is 8197.60 N</u>
Explanation:
Using the definition of the centripetal force we have:

Where:
- m is the mass of the car
- v is the speed
- R is the radius of the curvature
Now, the force acting in the motion is just the friction force, so we have:
<u>Therefore the magnitude of the friction force is 8197.60 N</u>
I hope it helps you!
Electroreception is limited to aquatic environments because on here is the resistivity of the medium is low enough for electric currents to be generated as the result of electric fields of biological origin. In air, the resistivity of the environment is so high that electric fields from biological sources do not generate a significant electric current. Electroreceptor are found in a number of species of fish, and in at least one species of mammal, the Duck-Billed platypus.
If the field is in a vacuum, the magnetic field is the dominant factor determining the motion. Since the magnetic force is perpendicular to the direction of travel, a charged particle follows a curved path in a magnetic field. The particle continues to follow this curved path until it forms a complete circle. Another way to look at this is that the magnetic force is always perpendicular to velocity, so that it does no work on the charged particle. The particle’s kinetic energy and speed thus remain constant. The direction of motion is affected but not the speed.
A negatively charged particle moves in the plane of the paper in a region where the magnetic field is perpendicular to the paper (represented by the small × ’s—like the tails of arrows). The magnetic force is perpendicular to the velocity, so velocity changes in direction but not magnitude. The result is uniform circular motion.