Answer:
v' = 1.21 m/s
Explanation:
Mass of a green ball, m = 0.525 kg
Mass of a blue ball, m' = 0.482 kg
Initial velocity of green ball, u = 2.26 m/s
Initial velocity of blue ball, u' = 0 (at rest)
After the collision,
The final velocity of the green ball, v = 1.14 m/s
We need to find the final velocity of the blue ball after the collision if the collision is head on. Let v' is the final velcity of the blue ball. Using the conservation of momentum to find it :

So, the final velocity of the blue ball is 1.21 m/s.
X^2+y^2+z^2=A^2
But here XY and Z are all equal so
3X^2=A^2
X=A/(sqrt(3))
Each component is the value of a divided by the square root of three. This way if you square then and add them up it equals a squared
Answer:
The Ic will be zero.
Explanation:
Capacitors have a working principal as follows:
- As the current flows through the circuit, they store the electrical energy according to certain attributes they have such as the area of the plates and the material's capacitence in between the plates.
An AC voltage increases and decreases between certain maximum and minimum points periodically. So while the AC voltage is on the positive side, the capacitor charges up and when the AC voltage crosses to the negative side, the capacitor takes over and it's current starts increasing as the current coming from the AC source decreases.
So in this case, as the AC voltage crosses zero, the capacitor current was decreasing because the AC voltage was on the positive side and it was charging. The capacitor current will be zero as well and it will start to increase when AC voltage is on the negative.
I hope this answer helps.
The SI system, also called the metric system, is used around the world. There are seven basic units in the SI system: the meter (m), the kilogram (kg), the second (s), the kelvin (K), the ampere (A), the mole (mol), and the candela (cd).