Answer:
metallic bond
because this diagram is electron gas theory which shows metallic bond
Moles Chlorine to grams = 35.453 grams.
moles Chlorine to grams = 70.906 grams.
moles Chlorine to grams = 106.359 grams.
moles Chlorine to grams = 141.812 grams.
moles Chlorine to grams = 177.265 grams.
moles Chlorine to grams = 212.718 grams.
To find them you would have numbers of the elements in percentage or grams then you divide them by their molar mass to get their moles. From there you divide by the smallest number. Round it to two or one sig fig. If you have a number that is for ex. 2.5 you multiply it by 2 to make it whole as well the other whole numbers. Then to find the molecular formula the problem must give you another molar mass and using your empirical formula convert it to its molar mass then you divide them, larger number over smaller number. You should get a number round it to 1 sig fig. Now you use that number and multiply the subscripts on the empirical formula to get the molecular formula.
Answer:
Ley.
Explanation:
En la teoría de la ciencia, la regularidad de los procesos en la naturaleza se denomina ley de la naturaleza. Las leyes naturales se diferencian de otras leyes en que los seres humanos no pueden ponerlas en vigor ni anularlas a su discreción. En tal sentido, la composición química del agua es indudablemente una ley natural, en tanto el hombre no puede modificarla sin modificar las características inherentes del agua como tal.
Answer:
See the answer below
Explanation:
Even though plants are rooted in the ground, they still move, exert <u>force,</u> and do<u> work</u>.
Plant cells have very strong cell walls that allow <u>pressure</u> to build up inside of the cell as water is absorbed. This pressure is called <u>turgor</u>.
When turgor pressure is high enough in a cell, the cell walls become <u>firm</u> and as a result, the cell becomes rigid and the plant is able to stand <u>tall</u> and<u> straight</u>.
When a plant does not get enough water, the turgor pressure inside of the cells <u>decreases.</u> A decrease in <u>pressure</u> pushing against the cell wall causes the cells to lose their <u>shape</u> and <u>shrink</u>. This causes the plant to begin to droop or <u>wilt</u>.
When the wilted plant gets enough water, the cells will become rigid again, and the plant will stand firm and straight once again.