Answer:
Explanation:Artificial selection is distinct from natural selection in that it describes selection applied by humans in order to produce genetic change. When artificial selection is imposed, the trait or traits being selected are known, whereas with natural selection they have to be inferred. In most circumstances and unless otherwise qualified, directional selection is applied, i.e., only high-scoring individuals are favored for a quantitative trait. Artificial selection is the basic method of genetic improvement programs for crop plants or livestock (see Selective Breeding). It is also used as a tool in the laboratory to investigate the genetic properties of a trait in a species or population, for example, the magnitude of genetic variance or heritability, the possible duration of and limits to selection, and the correlations among traits, including with fitness.
Answer:
The final product of the reaction is (<em>2S,3S</em>)-2-ethoxy-3-methylpentane.
Explanation:
The given reaction undergoes
mechanism in which the nucleophile attacks the backside and it is substituted by the elimination of bromine.
Due to the backside attack of nucleophile , the inverse in stereo-chemistry is observed.
After the substitution of ethoxy group, the configuration is assigned according to the priority it shows clock wise direction(R) - configuration.
When hydrogen faces the front side , it results shows inverse configuration i.e, S- configuration.
The chemical reaction is as follows.
Answer:
Evaporation
Explanation:
Evaporation is the certain process that requires water to gain heat energy from the environment.
At STP, copper (Cu) would be the only substance here that will exist in the solid state.
Answer:
Chemical formula of the precipitate is Fe(OH)₃
Explanation:
Fe(NO₃)₃ and K₂CO₃ are strong electrolytes and completely dissociates in water. Carbonate ions is a weak base and combines with water to form hydroxide ions (OH⁻), as follows
CO₃²⁻ + H₂O <----------------> HCO₃⁻ + OH⁻
Ferric, Fe (III), combines with these hydroxide ions to form insoluble precipitates. Fe(OH)₃ is only partially soluble i.e., it does not completely dissociate in water. When the solutions of Fe(NO₃)₃ and K₂CO₃ are mixed together, Fe(OH)₃ precipitates out due to the strong electrostatic attraction between Fe (III) and hydroxide ions.