Answer: 1.55 x 10⁴ Nm²c^-1
Explanation: The electric flux, electric field intensity and area are related by the formulae below.
Φ= EAcosθ,
Where Φ= electric flux (Nm²c^-1)
E =electric field intensity (N/m²)
A = Area (m²)
θ= this is angle between the planar area and the magnetic flux
For our question E=3.80KN/c= 3800 N/c
A= 0.700 x 0.350= 0.245m²
θ= 0° ( this is because the electric field was applied along the x axis, thus the electric flux will be parallel to the area).
Hence Φ= 3800 x 0.245 x cos(0)
= 3800 x 0.245 x 1 (value of cos 0° =1)
= 1.55 x 10⁴ Nm²c^-1
Thus the electric field is 1.55 x 10⁴ Nm²c^-1
Well, first of all, there's no such thing as "fully charged" for a capacitor.
A capacitor has a "maximum working voltage", because of mechanical
or chemical reasons, just like a car has a maximum safe speed. But
anywhere below that, cars and capacitors do their jobs just fine, without
any risk of failing.
So we have a capacitor that has some charge on it, and therefore some
voltage across it. From the list of choices above . . .
<span>-- Both plates have the same amount of charge.
Yes. And both plates have opposite TYPES of charge.
One plate is loaded with electrons and is negatively charged.
The other plate is missing electrons and is positively charged.
-- There is a potential difference between the plates.
Yes. That's the "voltage" mentioned earlier.
It's a measure of how badly the extra electrons want to jump
from the negative plate to the positive plate.
-- Electric potential energy is stored.
Yes. It's the energy that had to be put into the capacitor
to move electrons away from one plate and cram them
onto the other plate.
</span>
Answer:
The coefficient is 0.90
Explanation:
Drawing a diagram makes thing easier, we will assume that the acceleration tends to zero because it start barely moving.
