1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
AlekseyPX
3 years ago
9

Estimate the maximum efficiency of an automobile engine that has a compression ratio of 5:1.0. Assume the engine operates accord

ing to the Otto cycle and assume γ = 1.4.
Physics
1 answer:
Sunny_sXe [5.5K]3 years ago
5 0

Answer:

Efficiency of an Otto cycle is = 47.47 %

Explanation:

Compression ratio (r) = 5

Ratio of specific heat (\gamma) = 1.4

Efficiency of an Otto cycle is given by  = 1 - \frac{1}{r^{\gamma - 1} }

Put the values of r and \gamma in above formula we get

Efficiency = 1 -\frac{1}{5^{1.4 - 1} }

Efficiency = 0.4747 = 47.47 %

This is the efficiency of an Otto cycle.

You might be interested in
A) One Strategy in a snowball fight the snowball at a hangover level ground. While your opponent is watching this first snowfall
Alexandra [31]

Answers:

a) \theta_{2}=38\°

b) t=0.495 s

Explanation:

This situation is a good example of the projectile motion or parabolic motion, in which the travel of the snowball has two components: <u>x-component</u> and <u>y-component</u>. Being their main equations as follows for both snowballs:

<h3><u>Snowball 1:</u></h3>

<u>x-component: </u>

x=V_{o}cos\theta_{1} t_{1}   (1)

Where:

V_{o}=14.1 m/s is the initial speed  of snowball 1 (and snowball 2, as well)

\theta_{1}=52\° is the angle for snowball 1

t_{1} is the time since the snowball 1 is thrown until it hits the opponent

<u>y-component: </u>

y=y_{o}+V_{o}sin\theta_{1} t_{1}+\frac{gt_{1}^{2}}{2}   (2)

Where:

y_{o}=0  is the initial height of the snowball 1 (assuming that both people are only on the x axis of the frame of reference, therefore the value of the position in the y-component is zero.)

y=0  is the final height of the  snowball 1

g=-9.8m/s^{2}  is the acceleration due gravity (always directed downwards)

<h3><u>Snowball 2:</u></h3>

<u>x-component: </u>

x=V_{o}cos\theta_{2} t_{2}   (3)

Where:

\theta_{2} is the angle for snowball 2

t_{2} is the time since the snowball 2 is thrown until it hits the opponent

<u>y-component: </u>

y=y_{o}+V_{o}sin\theta_{2} t_{2}+\frac{gt_{2}^{2}}{2}   (4)

Having this clear, let's begin with the answers:

<h2>a) Angle for snowball 2</h2>

Firstly, we have to isolate t_{1} from (2):

0=0+V_{o}sin\theta_{1} t_{1}+\frac{gt_{1}^{2}}{2}   (5)

t_{1}=-\frac{2V_{o}sin\theta_{1}}{g}   (6)

Substituting (6) in (1):

x=V_{o}cos\theta_{1}(-\frac{2V_{o}sin\theta_{1}}{g})   (7)

Rewritting (7) and knowing sin(2\theta)=sen\theta cos\theta:

x=-\frac{V_{o}^{2}}{g} sin(2\theta_{1})   (8)

x=-\frac{(14.1 m/s)^{2}}{-9.8 m/s^{2}} sin(2(52\°))   (9)

x=19.684 m   (10)  This is the point at which snowball 1 hits and snowball 2 should hit, too.

With this in mind, we have to isolate t_{2} from (4) and substitute it on (3):

t_{2}=-\frac{2V_{o}sin\theta_{2}}{g}   (11)

x=V_{o}cos\theta_{2} (-\frac{2V_{o}sin\theta_{2}}{g})   (12)

Rewritting (12):

x=-\frac{V_{o}^{2}}{g} sin(2\theta_{2})   (13)

Finding \theta_{2}:

2\theta_{2}=sin^{-1}(\frac{-xg}{V_{o}^{2}})   (14)

2\theta_{2}=75.99\°  

\theta_{2}=37.99\° \approx 38\°  (15) This is the second angle at which snowball 2 must be thrown. Note this angle is lower than the first angle (\theta_{2} < \theta_{1}).

<h2>b) Time difference between both snowballs</h2>

Now we will find the value of t_{1} and t_{2} from (6) and (11), respectively:

t_{1}=-\frac{2V_{o}sin\theta_{1}}{g}  

t_{1}=-\frac{2(14.1 m/s)sin(52\°)}{-9.8m/s^{2}}   (16)

t_{1}=2.267 s   (17)

t_{2}=-\frac{2V_{o}sin\theta_{2}}{g}  

t_{2}=-\frac{2(14.1 m/s)sin(38\°)}{-9.8m/s^{2}}   (18)

t_{2}=1.771 s   (19)

Since snowball 1 was thrown before snowball 2, we have:

t_{1}-t=t_{2}   (20)

Finding the time difference t between both:

t=t_{1}-t_{2}   (21)

t=2.267 s - 1.771 s  

Finally:

t=0.495 s  

4 0
4 years ago
According to ohms law if you don't change the value of the resistor and you double the voltage in a circuit the amount of curren
padilas [110]

Answer: D (doubled)

According to ohm's law

                      I = V/R ,

                      V = IR ;   R = constant and V is doubled

  From the equation

                      V is directly proportional to the current, and it is given that R is constant ;

                    2V = 2I. R    since R = constant

                      Hence I is doubled.

                     

                   

5 0
4 years ago
A student finds an unlabeled liquid container in his lab. He notices that the container has two liquids. Since the two liquids h
raketka [301]

Answer:

\rho = 1848.03 kg m^{-3}

Explanation:

given data:

density of water \rho = 1 gm/cm^3 = 1000 kg/m^3

height  of water  = 20 cm  =0.2 m

Pressure  p = 1.01300*10^5 Pa

pressure at bottom

P =  P_{fluid} + P_{h_2 o}

P   = P_{fluid}  + \rho g h

P_{fluid}  = P - \rho g h

                 = 1.01300*10^5 - 1000*0.2*9.8

                 = 99340 Pa

p_{fluid}  = P_{atm} + \rho g h_{fluid}                       h_[fluid} = 0.307m

99340 = 104900 + \rho *9.8*0.307

\rho = 1848.03 kg m^{-3}

5 0
4 years ago
Please tell me if this is Newton's first law, second, or third law of motion. There can be more than one of the same answer very
AfilCa [17]

Answer: Hope This Helps!

Explanation:

1: Newton’s first law of motion can explain how a magician pulls a tablecloth from underneath the dishes. A negligible horizontal force is applied during the process. As per Newton’s first law of motion, the dishes and glasses remain in their state of motion (rest); as a result, they remain undisturbed.

2: Newton's First Law of Motion is defined as "An object at rest and an object in motion will stay in motion with the same speed and in the same direction unless acted upon by an unbalanced force."In soccer, when the soccer ball is in the soccer field and it is not moving, that means that it is at rest and there is no force acting upon it. When there is a person that is ready to play soccer and wants to kick the ball and play, then the unbalanced force would be the power from the person's foot.

3: Newtons third law can explain, as the cannonball is pushed forwards by the expanding high-pressure gases created by the exploding gunpowder, it pushes back on these gases. The gases push back on the cannon itself, causing it to roll backwards. Alternative answer: the cannon pushes forward on the cannonball. the reaction force is the cannonball pushing backwards on the cannon.

5 0
4 years ago
Jorge has made a hypothesis that the more you feed him out the shinier it’s fur will be because the mouse will be healthier
guapka [62]

I think the correct answer is B

8 0
3 years ago
Read 2 more answers
Other questions:
  • An aluminum wire of length 1.0 meter has a resistance of 9.0x10^-3 ohm. If the wire were cut into two equal lengths, each length
    11·2 answers
  • Which of these best describes the difference between energy and power? A) Power and energy have nothing in common B) Energy and
    8·1 answer
  • A horizontal line above the time axis of a speed vs. time graph means an object is ___.
    7·1 answer
  • Disorder in the universe increases because
    13·1 answer
  • Troposphere is the highest atmospheric layer.
    12·1 answer
  • Find the magnetic field strength at 1.50 m from the center of the circular region (e.g., outside the electric-field region).
    9·1 answer
  • Which of the following is a benefit of urbanization
    6·2 answers
  • An atom with the expected number of neutrons, protons, and electrons is called a(n)
    5·1 answer
  • Who invented gravity
    5·2 answers
  • Properties of matter are typically broken into two categories:physical and (fill in the blank)
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!