We know, F = m*a
Here, F = 600-400 = 200 N downwards
m = 60 Kg
Substitute their values,
a = 200/60
a = 20/6
a = 10/3
a = 3.33 m/s² downwards
In short, Your Answer would be 3.33 m/s² downwards
Hope this helps!
Answer:
-3.396 m/s or 3.465 m/s
Explanation:
v = Speed of sound in air = 343 m/s
= Relative speed of the singer
f = Observed frequency
f' = Actual frequency
1% change can mean 
From the Doppler effect equation we have

The velocity is -3.396 m/s
when 

The velocity is 3.465 m/s
If the length of the wire increases, then the amount of resistance will also increase.
1. Take a long piece of wire and cut it 10 pieces. Those pieces should all be different sizes, one should be 5___ (units in meter, cm, inches, etc.), and the next should be 5 ___ (units in meter, cm, inches, etc.) more than the one before.
2. Take one piece of wire and measure the resistance using ___ and record the results in the data table.
3. Repeat the previous step with all the pieces of wire.
4. Compare and contrast the results you have found.
I hope this helps a bit :)
Electrostatic repulsion is the force between two charges having the same sign, that tends to separate them further. The force is proportional to the product of the charges, and inversely proportional to the square of the distance between them.
Explanation:
To find the answer use the equation speed of light=wavelength multiplied by frequency (c=lambda*f) by substituting the value for the frequency the the speed of light