Answer:
friction help to slow motion in other word it oppose motion, but in a frictionless environment object would move with difficult stopping point.
Answer:
D. Graphing the force as a function of distance and calculating the area under the curve.
Explanation:
Answer:A
Explanation:
In R-L circuit current is given by
![i=i_0\left [ 1-e^{\frac{-t}{L/R}}\right ]](https://tex.z-dn.net/?f=i%3Di_0%5Cleft%20%5B%201-e%5E%7B%5Cfrac%7B-t%7D%7BL%2FR%7D%7D%5Cright%20%5D)
where i=current at any time t

R=resistance
L=Inductance
at t=0
approaches to 1
therefore ![i=i_0\left [ 1-1\right ]](https://tex.z-dn.net/?f=i%3Di_0%5Cleft%20%5B%201-1%5Cright%20%5D)
i=0
when t approaches to
,
approaches to zero
thus 
thus we can say that initially circuit act as broken wire with zero current
and it increases exponentially with time and act as ordinary connecting wire
Answer:

Explanation:
Given

Required
Determine the percentage error
First, we calculate the mean

This gives:



Next, calculate the mean absolute error (E)

This gives:
![|E| = \sqrt{\frac{1}{6}*[(1.54 - 1.51)^2 +(1.53- 1.51)^2 +.... +(1.45- 1.51)^2]}](https://tex.z-dn.net/?f=%7CE%7C%20%3D%20%5Csqrt%7B%5Cfrac%7B1%7D%7B6%7D%2A%5B%281.54%20-%201.51%29%5E2%20%2B%281.53-%201.51%29%5E2%20%2B....%20%2B%281.45-%201.51%29%5E2%5D%7D)



Next, calculate the relative error (R)



Lastly, the percentage error is calculated as:


Answer:
the answer is C
Explanation:
C) friction - mechanical - electrical